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Chapter I

Introduction

In this Chapter, we aim to give a very brief introduction to the high-dimensional problems

that currently mathematicians, statisticians and data miners are trying to address. Rather

than attempting to give an overview of this vast area, we will explain what is meant by high-

dimensional data and then focus on some methods which have been introduced to deal with

this sort of data. The approaches from these Þelds are often di!erent from each other in the

way of tackling high-dimensional data. However, there is one main point that reconcile theses

scientiÞc communities: something has to be done to reshape the classical approaches to better

analyse high-dimensional data.

1 Challenges of High-Dimensional Modeling
In the current century, a mixture of expertise and the new technologies leads to the avail-

ability of massive amount of data. Our society invests massively in the collection and processing

of data of all kinds; hyperspectral imagery, internet portals, Þnancial tick by tick data, and

DNA microarrays are just a few of the better-known sources, feeding data in torrential streams

into scientiÞc and business databases world-wide.

The trend today is towards more observations but even more larger number of variables. We

are seeing examples where the data collected on individual observation are curves, or spectra,

or images, or even movies, so that a single observations has dimensions in the thousands or

billions, while there are only tens or hundreds of observations available to study. Classical

methods cannot cope with this kind of explosive growth of the dimensionality of the observa-

tion matrix. Therefore high dimensional data analysis will be a very signiÞcant activity in the

future, and completely new methods of high dimensional data analysis will be developed.

Over the last few decades, data, data management, and data processing have become ubiqui-
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tous factors in modern life and work. Huge investments have been made in various data gather-

ing and data processing mechanisms. The information technology industry is the fastest growing

and most lucrative segment of the world economy, and much of the growth occurs in the de-

velopment, management, and warehousing of streams of data for scientiÞc,medical,engineering,

and commercial purposes. Some recent examples include, Fan and Li (2006),:

Ñ Biotech Data: the fantastic progress made in the last years in gathering data about the

human genome have spread statistical concepts toward biological Þelds. This is actually

just the opening round in a long series of developments. The genome is only indirectly

related to protein function and protein function are only indirectly related to overall

cell function. Over time, the focus is likely to switch from genomics to proteomics and

beyond. In the process more and more massive databases will be compiled.

Ñ Financial Data: over the last decade, high frequency Þnancial data have become avail-

able; in the early to mid 1990s data on individual currency trades, became available,

tracking individual transactions. After the recent economic crisis, statistical models

for long and high dimension streams of data are required to better predict trembling

situations.

Ñ Consumer Financial Data: many transactions are made on the web; browsing, searching,

purchasing are being recorded, correlated, compiled into databases, and sold and resold,

as advertisers scramble to correlate consumer actions with pockets of demand for various

goods and services.

Previous examples showed that we are in the era of massive automatic data collection, sys-

tematically obtaining many measurements, not knowing which ones will be relevant to the

phenomenon of interest. Therefore, statisticians must face the problem of high dimensionality,

reshaping the classical statistical thinking and data analysis.

2 High-Dimensioanl Data Analysis
Statistical estimation in high-dimensional situations, where the number of measured vari-

ablesp is substantially larger than the sample sizen, also known as,large-p-small-n, is funda-

mentally di!erent from the estimation problems in the classical settings where we havesmall-p-
large-n. Since high-dimensional datasets are not uncommon in modern real-world applications,

such as gene expression microarray data and functional. In many real-world problems the num-

ber of covariates is very large and often statisticians have to tackle the challenge of treating

data in which the number of variablesp is much larger than the number of observationsn, i.e
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when n ! p, or sometimesp = p
n

grows with n in the asymptotic analysis, possibly very fast,

so that n ! p
n

for n tends to inÞnity. Such high-dimensional settings with their many new

scientiÞc problems create great opportunities and signiÞcant challenges for the development

of new techniques in statistics. From a classical statistical point of view, many algorithms

for solving the problem of dimensional reduction and feature extraction have been conceived

in order to obtain parsimonious models that are desirable as they provide simple and inter-

pretable relations among scientiÞc variables in addition to reducing forecasting errors. But in

high-dimensional systems, we work with large size problems (from on the order of50 " 100 up

to thousands of variables) and the space of all possible subset of variables is of the order of

2p. Treating exhaustively all the possible subsets of models is not realistic because the study

of all the sub-models is a NP-hard problem with computational time increasing exponentially

with the dimensionality. Moreover, high dimensional real problems often involve costly exper-

imentations and new techniques are needed to reduce the number of the experimental trials

though guaranteeing satisfactory results. The expensive experimental and computational costs

make traditional statistical procedures infeasible for high-dimensional data analysis. Generally

speaking, learning salient information from relatively a few samples when many more variables

are present is not possible without knowing special structures in the data.

To alleviate the ill-posed problem, it is natural to restrict our attention to subsets of all

solutions with certain special structures or properties and meanwhile to incorporate the regu-

larization ideas into estimation. Crucially, one has to assume in this setting that the data have

sparse structure, meaning that most of the variables are irrelevant for accurate prediction. The

task is hence to Þlter-out the relevant subset of variables. While high dimensionality of a data

set is evident from the start, it is usually not easy to verify structural sparseness.

Sparsity is one commonly hypothesized condition and it seems to be realistic for many real-

world applications. There has been a surge in statistical literature, which is the LASSO.

The LASSO, proposed by Tibshirani (1996), is an acronym for Least Absolute Shrinkage

and Selection Operator. Among the main reasons why it has become very popular for high-

dimensional estimation problems are its statistical accuracy for prediction and variable selection

coupled with its computational feasibility.

The LASSO opens a new door to variable selection by using the¸
1

-penalty in the model Þtting

criterion. Due to the nature of the ¸
1

-penalty, the LASSO performs continuous shrinkage and

variable selection simultaneously. Thus the LASSO possesses the nice properties of both the

¸
2

-penalization (ridge) and best-subset selection. It is forcefully argued that the automatic
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feature selection property makes the LASSO a better choice than the¸
2

-penalization in high

dimensional problems, especially when there are lots of redundant noise features although the¸
2

regularization has been widely used in various learning problems such as smoothing splines. An

¸
1

method called basis pursuit was also used in signal processing Chen, Donoho and Saunders

(2001). There are many theoretical work to prove the superiority of thȩ
1

-penalization in

sparse settings. It is also shown that thȩ
1

-approach is able to discover the "right" sparse

representation of the model under certain conditions (ref.).

3 Report Outlines
Now, we outline the structure of the rest of this report.

In Chapter 2, we address to present the ordinary regression methods of the linear models, more

speciÞcally, we present the least squares estimation and the ridge estimation. We further de-

Þne the LASSO estimator and we study some of its theoretical properties. By the end of this

chapter, we devote our study to a classical e"cient algorithm, namely, least angle regression

(LARS, Efron et al. (2004)) which is a great conceptual tool for understanding the behaviour

of LASSO solutions.

In Chapter 3, we are based in our study to the article Harchaoui and Levy-Leduc (2010). The

authors deal with the estimation of change-points in one- dimensional piecewise constant signals

observed in white noise. Their approach consists in reframing the task in a variable selection

context. For this purpose, they use a penalized least square criterion with a¸
1

-type penalty.
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Chapter II

LASSO-Type Estimator

The LASSO was proposed as a technique for linear regression. Linear regression is itself a

speciÞc technique of regression and this focus on techniques for computing this operator. This

introductory chapter precises this hierarchy of problem with their settings, motivations and

notations. Particular attention is given to the LASSO itself and algorithms for solving it, han-

dling the ¸
1

-norm, and a generalized deÞnition of the LASSO. We discuss in this chapter some

fundamental methodological and computational aspects which addresses some bias problems of

the LASSO. The methodological steps are supported by describing various theoretical results

which will be fully developed.

1 Linear Regression Model
In this chapter, we consider the problem of estimating the coe"cient vector in a linear

regression model, deÞned as

Y = X—ı + Á. (II.1)

Or equivalently

Y =
pÿ

j=1

—ı

j

X
j

+ Á, (II.2)

where we use the following notations:

X =

Q

ccca

x
1,1

á á áx
1,p

...
. . .

...

x
n,1

á á áx
n,p

R

dddb =

Q

ccca

x
1

...

x
n

R

dddb =
1

X
1

á á áX
p

2
,
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II.1 Linear Regression Model

Y =

Q

ccca

Y
1

...

Y
n

R

dddb , Á =

Q

ccca

Á
1

...

Á
n

R

dddb , and—ı =

Q

ccca

—ı

1

...

—ı

p

R

dddb .

HereX is the n # p design matrix which can either be non-stochastic or random. It is selected

by the experimenter to determine its relationship to the observation. As per convention, rows

of X represent thep-dimensional observations and columns ofX represent the predictors.Y is

the observation vector and the outcome of a statistical experiment. The coe"cientsY
i

are also

called the endogenous variables, response variables, measured variables, or dependent variables.

—ı is the target coe"cient vector to be estimated. The statistical estimation focuses on it. It

represents the variables of interest. The entries of—ı are the regression coe"cients. We regardÁ

as a column vector, and useÁ€ to denote its conjugate transpose. Thenoise measurement error

vector Á = (Á
1

, ..., Á
n

)€ captures all others factors which inßuence the observation. Depending

on the model,Á is assumed to beiid according to a known distribution. Here we do not have

to generally assume that the error possesses a Þnite second moment‡2 for each component.

This corresponds to a situation where one observes some real variables (herevariable is taken

in its physical sense, not the probabilistic one)X
1

, ..., X
p

and Y at n di!erent times or under

n di!erent circumstances. This results inn groups of values of those variables (X
1

, ..., X
p

, Y
i

)

for i $ { 1, ..., n} each group corresponding to a time of observation or a particular experiment.

We denote byY = ( Y
i

)
1ÆiÆn

and (X
1

, ..., X
p

) the corresponding vectors. In this setting the

main assumption is that the variable of interestY is a linear (but otherwise unknown) function

of the explanatory variablesX1, ..., Xp plus some random perturbation. Classically, we are

interested in estimation of the parameters—ı

j

or equivalently X—ı. As a particular case, we

present an elementary but important statistical model, the Gaussian linear model. Gaussian

linear regression is a statistical framework in which, the vector of noise had been distributed

according to a zero-mean Gaussian distribution. It reads as

Á s N
n

(O, ‡2Id
n

),

whereN
n

is the n-multivariate Gaussian distribution, Id
n

$ Rn◊n is the identity matrix, and ‡

is the standard deviation. In this case, the random vectorÁ is called a a Gaussian white noise.

1.1 Least Squares Estimator and Ridge Estimator

We present two popular methods to estimate the parameter—ı, the least squares estimator

and the ridge estimator.
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II.1 Linear Regression Model

Least Squares Estimator

The usually method for estimating the parameter—ı $ Rp is the least squares. It consists in

the search of a valuê— of the parameter which minimizes the the residual sum of squares (RSS):

nÿ

i=1

(y
i

" x
i

—̂)2 = min
—œRp

nÿ

i=1

(y
i

" x
i

—)2.

One can write this minimization problem in a matrix form as following:

%Y " X—̂%2

n

= min
—œRp

%Y " X—%2

n

, (II.3)

where% á |
2

is the standard¸
2

-norm given by %x%2

2

= 1

n

q
m

i=1

x2

i

, for all x $ Rm. It is clear that

there is always a solution—̂ of the minimization problem II.3, namely, least squares estimator

(LSE) of —ı which will be noted as—ls. We write

—̂
ls

$ argmin
—œRp

1
n

nÿ

i=1

(y
i

" x
i

—)2 = argmin
—œRp

%Y " X—%2

n

.

If the design matrix X€X is invertible then the least squares estimator has an unique solution,

deÞned by

—̂
ls

= (X€X)≠1X€Y. (II.4)

It is well known that ordinary least squares often does poorly in both prediction and inter-

pretation. Penalization techniques have been proposed to improve ordinary least squares. For

example, ridge regression Hoerl and Kennard (1988), minimizes RSS subject to a bound on

the ¸
2

-norm of the coe"cients. As a continuous shrinkage method, ridge regression achieves its

better prediction performance through a bias-variance trade-o!.

Ridge Estimator

Note that the basic requirement for the Least squares estimation of a linear regression isX€X≠1

exists. There are two reasons that the inverse does not exits. First,n ! p and collinearity

between the explanatory variables. The technique of ridge regression is one of the most popular

and best performing alternatives to the ordinary least squares methods. A simple way to

guarantee the invertibility is adding a diagonal matrix toX€X, i.e. X€X+⁄ I
p

where I
p

is a

7



II.1 Linear Regression Model

p # p identity matrix. The ridge regression estimator is then

—̂
r

(⁄) = (X€X + ⁄I
p

)≠1X€Y. (II.5)

where ⁄ > 0 is a parameter needs to be chosen. The motivation of ridge regression is very

simple, but it has good performance. Another way to understand it is that we dont expect

an estimator with too large —ı. Thus, we penalize the value of—ı. Recall the least square

estimation is to minimize

To penalize the value of—ı, we can consider estimate—ı by minimizing

—̂
r

(⁄) $ argmin
—œRp

1
n

nÿ

i=1

(y
i

" x
i

—)2 + ⁄%—%2

2

= argmin
—œRp

%Y " X—%2

n

+ ⁄%—%2

2

. (II.6)

It is not di"cult to prove that to solution of — to the above problem is

—̂
r

(⁄) = (X€X + ⁄I
p

)≠1X€Y.

Note that with larger ⁄, the penalty on — tends to be stronger; the solution of—ı will be

smaller.

Variable Selection

The parameter —ı = (—ı

1

, ..., —ı

p

)€ shows the weight of the explanatory variablesX
1

, ..., X
p

over the responseY. When the number of the explanatory variables is very important, an

objectif would be evaluated the contribution of each variable and eliminated the non-pertinent

variables. This typical approach gives an interpretable estimators. In this context, the least

squares and ridge estimator are not e"cient. It is useful to consider some competent methods

to select the subset of the explanatory variables, a!ording an almost complete representation

of the response variableY. Therefore, diverse strategies are been proposed for achieving the

determination of the pertinent variables. Some classical approach isSubset Selection. Let B
k

a subset of explanatory variables of sizek which reduces the maximum of RSS (ref.).

Another strategy for the variable selection is thethresholding. In this case, we use a prelimi-

nary estimator (e.g. the LSE whenp & n), which we exploit it to exclude some variables from

the study. A variable will be selected only when the estimation of the corresponding regres-

sor coe"cient, obtained by the preliminary estimator, exceeds some threshold deÞned by the

statistician. As an example, we can consider thesoft thresholding and the hard thresholding

8



II.1 Linear Regression Model

(ref.)

To reduce the number of explanatory variables, diverse tests based on the LSE are been proposed

for testing the relevance of each variableX
j

. For all j $ { 1, ..., p} , these procedures test under

the null hypothesis—ı

j

= 0 and the alternative hypothesis—ı

j

'= 0. Frequently, when the noise

is gaussian, someone uses the Student test or Fisher test.

1.2 Penalized Least Squares and Sparsity

Let A an arbitrary set, we note by|A| the cardinal of A. For the study of the method of

variable selection, it is convenient to deÞne the sparsity set as the following:

Definition 1.1 Let the model defined by II.2. One can define the support set associated to
the vector —ı by

Sı = Sı(—ı) := { j $ { 1, ..., p} : —ı

j

'= 0} . (II.7)

Thereafter, we call that the vector —ı has the sparsity assumption if the quantity |Sı| ! p.

The construction of interpretable estimators is an important issue. Some of them are obtained

from the ¸
0

-penalization such that the Information CriterionC
p

of Mallows, Akaike Information

Criterion (AIK) or the Bayesian Information Criterion (BIC). These criterions select from a

collection of sizeD estimators of—ı,

F̂ = { —̂
1

, ..., —̂
D

} ,

whose has the good estimation ofX—ı and the good estimation to the set of the pertinent

variables Sı deÞned inII.8. Clearly, one can understand the important of the choice of this

family F̂ . Moreover, these criterions are constructed from the penality⁄%—%
0

which interferes

the ¸
0

-norm of the vector—, deÞned by

%—%
0

:=
pÿ

j=1

11{—

j

”=0},

11{·} denotes the indicator function

Unfortunately, the ¸
0

-minimization problems are known to be NP-hard in general, so that

the existence of polynomial-time algorithms is highly unlikely. This challenge motivates the use

of computationally tractable approximations or relaxations to¸
0

minimization.In particular, a

9



II.2 LASSO Estimator

great deal of research over the past decade has studied the use of the¸
1

-norm as a computa-

tionally tractable surrogate to the ¸
0

-norm. The LASSO for linear models is the core example

to develop the methodology foŗ
1

-penalization in high-dimensional settings. Moreover, it is a

penalized least squares method imposing a¸
1

-penalty on the regression coe"cients. Due to the

nature of the ¸
1

-penalty, the LASSO does both continuous shrinkage and automatic variable

selection simultaneously.

2 LASSO Estimator

2.1 Definition

Definition 2.1 The LASSO estimator of —ı $ Rp is defined as

—̂
lasso

= —̂
lasso

(⁄) := arg min
—œRp

Ó1
2%Y " X—%2

n

+ ⁄%—%
1

Ô
, (II.8)

where the %—%
1

:=
pÿ

j=1

|—
j

| is the ¸
1

-norm.

The parameter⁄ can be depended to the number of observationn, i.e. ⁄ ( ⁄
n

. Also, ⁄ ) 0 is

a shrinkage tuning parameter. A larger⁄ yields a sparser linear sub-model whereas a smaller

⁄ corresponds to a less-sparse one. In extreme cases,⁄ = 0 gives the unregularized model and

⁄ = * produces the null model consisting of no predictor.

Equivalently, the convex programII.8 can be reformulated as thȩ
1

-constrained quadratic

problem as following: Y
]

[
min

—œRp

Ó
1

2

%Y " X—%2

n

Ô

s.t. %—%
1

& t
(II.9)

for somet > 0. If t is greater than or equal to the¸
1

-norm of the ordinary least squares esti-

mator, then that estimator is, of course, unchanged by the LASSO. For smaller values oft, the

LASSO shrinks the estimated coe"cient vector towards the origin (in thȩ
1

sense), typically

setting some of the coe"cients equal to zero. Thus, the LASSO combines characteristics of

ridge regression and subset selection and promises to be a useful tool for variable selection.

ProblemsII.8 and II.9 are equivalent; that is, for a given⁄, 0 < ⁄ < * , there exists at > 0
such that the two problems share the same solution, and vice versa. Optimization problems

like II.9 are usually referred to as constrained regression problems whileII.8 would be called

10



II.2 LASSO Estimator

a penalized regression.

Under a few assumptions, which are detailed in the sequel, the solution of this problem is

unique. We denote it bŷ—
lasso

( —̂
lasso

(⁄) and deÞne the regularization pathP as the set of all

solutions for all positive values of⁄

P := { —̂
lasso

(⁄) : ⁄ > 0} . (II.10)

The following proposition presents classical optimality and uniqueness conditions for the Lasso

solution, which are useful to characterizeP:

2.2 Convex Optimality and Uniqueness

We begin with some basic observations about the LASSO problemII.8. First, the minimum

in the Lasso is always achieved by at least one vector . This fact follows from the Weierstrass

theorem, because in itş
1

-constrained formII.9, the minimization is over a compact set, and

the objective function is continuous. Second, although the problem is always convex, it is not

always strictly convex, so that the optimum can fail to be unique. Indeed, a little calculation

shows that the Hessian of the quadratic component of the objective is thep # p X

€
X

n

matrix

, which is positive de?nite but not strictly so whenever . Nonetheless, as stated below in the

Lemma 1, strict dual feasibility conditions are su"cient to ensure uniqueness, even under high-

dimensional scalingn ! p.

The objective function is not always di!erentiable, since thȩ
1

-norm is a piecewise linear

function. However, the optima of the LassoII.8 can be characterized by a zero subgradient

condition. A vector is w $ Rp a subgradient for the¸
1

-norm evaluated at— $ Rp , written as

w $ ˆ%—%
1

, if its elements satisfy the relations

Y
]

[
w

j

= sign(—
j

), if —
j

'= 0
w

j

$ [" 1, +1], otherwise
(II.11)

For any subsetA $ { 1, ..., p} , let X
A

be the n # | A| matrix formed by by concatenating the

columns{ X
j

: j $ A} indexed byA With these deÞnitions, we state the following.

Lemma 2.1 (Karush Kuhn Tucker(KKT) Optimality Conditions)

11



II.2 LASSO Estimator

A vector —̂ $ Rp is a solution of II.8 if and only if for all j $ { 1, ..., p} ,

Y
]

[
X€

j

(Y " X—̂) = ⁄sign(—̂
j

), if —̂
j

'= 0
|X€

j

(Y " X—̂)| & ⁄, otherwise.
(II.12)

Define
Ŝ := { j $ { 1, ..., p} : |X€

j

(Y " X—̂)| = ⁄} .

Assuming the matrix X
ˆ

S

to be full rank, the solution is unique and we have

—̂ = (X€
ˆ

S

X
ˆ

S

)≠1(X€
ˆ

S

Y " z
ˆ

S

), (II.13)

where z
ˆ

S

= sign(X€(Y " X—̂)) is in {" 1; 0; +1} p, and the notation u
ˆ

S

for a vector u denotes
the vector of size |Ŝ| recording the entries of u indexed by Ŝ.

Proof. The propertie II.12 can be obtained by considering subgradient optimality conditions.

These can be written as0 $ { (" X€(Y " X—̂ + ⁄w : w $ ˆ%̂—%))} . The equalities in II.12
deÞne a linear system that has a unique solution given byII.13 when XŜ is full rank.

Let us now show the uniqueness of the Lasso solution. Consider another solution—̂Õ and choose

a scalar– in (0, 1). By convexity, —̂– := –—̂ + (1 " –)—̂Õ is also a solution. for allj + Ŝ, we have

|X€
j

(Y " X—̂–)| & –|X€
j

(Y " X—̂)| + (1 " –)|X€
j

(Y " X—̂Õ)| < ⁄.

Combining this inequality with the conditions II.12 we necessarily havê—–

ˆ

S

c

= —̂
ˆ

S

c

= 0, and

the vector —̂–

ˆ

S

c

is also a solution of the following reduced problem:

min
Â
—œR|

ˆ

S|
{

1
2%Y " X Â—%2

n

+ ⁄%Â—%
1

} .

When X
ˆ

S

is full rank, the Hessian X€
ˆ

S

X
ˆ

S

is positive deÞnite and this reduced problem is

strictly convex. Thus, it admits a unique solution —̂–

ˆ

S

= —̂
ˆ

S

It is then easy to conclude that

—̂
ˆ

S

= —̂–

ˆ

S

= —̂Õ
ˆ

S

.

Lemma 2.2 (Piecewise Linearity of the Path). Assume that for any ⁄ > 0 and solution
of II.8 the matrix X

ˆ

S

defined in Lemma 2.1 is full-rank. Then, the regularization path P :=
{ —̂

lasso

(⁄) : ⁄ > 0} is well defined, unique and continuous piecewise linear.

Proof. The existence/uniqueness of the regularization path was shown in Lemma 2.1. Let

us deÞne{ ẑ(⁄) := sign(—̂(⁄)) : ⁄ > 0} the set of sparsity patterns. Let us now consider

12



II.2 LASSO Estimator

⁄
1

< ⁄
2

such that ẑ(⁄
1

) = ẑ(⁄
2

). For all ◊ in [0, 1], it is easy to see that the solution—̂◊ :=
–—̂(⁄

1

) + (1 " ◊)—̂(⁄
2

) satisÞes the optimality conditions of Lemma 2.1 for⁄ = ◊⁄
1

+ (1 " ◊)⁄
2

,

and that —̂(◊⁄
1

+ (1 " ◊)⁄
2

) = —̂◊.

This shows that whenever two solutionŝ—(⁄
1

) and —̂(⁄
2

) have the same signs for⁄
1

'= ⁄
2

,

the regularization path between⁄
1

and ⁄
2

is a linear segment. As an important consequence,

the number of linear segments of the path is smaller than3p, the number of possible sparsity

patterns in {" 1, 0, 1} p. The path P is therefore piecewise linear with a Þnite number of kinks.

Moreover, since the function⁄ , —̂(⁄) is piecewise linear, it is piecewise continuous and has

right and left limits for every ⁄ > 0. It is easy to show that these limits satisfy the optimality

conditions of the propretieII.12. By uniqueness of the LASSO solution, they are equal tô—

and the function is in fact continuous.

In the next section we discuss some theoretical properties of LASSO.

2.3 Theoretical Results of the LASSO: A Brief of View

We begin by some deÞnitions. we assume in our regression setting that the vector— is sparse

in the ¸
0

-sense and many coe"cients of— are identically zero.The corresponding variables have

thus no inßuence on the response variable and could be safely removed. The sparsity pattern

of § is understood to be thesign function of its entries,

sign(x) =

Y
___]

___[

+1, ifx > 0
0, ifx = 0
" 1, ifx < 0

The sparsity pattern of a vector might thus look like

sign(—) = (+1, " 1, 0, 0, +1, +1, " 1, +1, 0, 0, ...),

distinguishing whether variables have a positive, negative or no inßuence at all on the response

variable. It is of interest whether the sparsity pattern of the LASSO estimator is a good

approximation to the true sparsity pattern. If these sparsity patterns agree asymptotically, the

estimator is said to besign consistent.

Definition 2.2 (Sign Consistency)
An estimator —̂ is sign consistent if and only if

P
1
sign(—̂) = sign(—ı)

2
, 1, as n , * .

13



II.2 LASSO Estimator

Asymptotic properties of the LASSO estimator have been extensively studied and analyzed.

In a seminal work (ref.), Knight and Fu, Þrst derived the asymptotic distribution of the LASSO

estimator and proved its estimation consistency under the shrinkage rate⁄
n

= o(
-

n) and

⁄
n

= o(n). More speciÞcally, as long as errors areiid and possess a common Þnite second

moment ‡2 , the
-

n scaled LASSO estimator with a sequence of properly tuned shrinkage

parameters{ ⁄
n

}
nœN

has an asymptotic normal distribution with variance‡2C≠1, where 1

n

X€X

, C and C is a positive deÞnite matrix.

Zhao and Yu (2006) found a su"cient and necessary condition required on the design matrix

for the LASSO estimator to be model selection consistent, i.e. theirrepresentable condition.

Definition 2.3 (Irrepresentable condition)
Let Sı the support set of —ı also it is the set of the relevant variables and let Sı

c = { 1, ..., p}" —ı

be the set of noise variables. The sub matrix C
UV

is understood as the matrix obtained from
C by keeping rows with index in the set U and columns with index in V . The irrepresentable
condition is fulfilled if

%C
S

ı

c

S

ıC
S

ı

S

ı

≠1(sign(—
S

ı)%̧Œ < 1.

These conditions are in general not easy to verify. Therefore, instead of requiring conditions

on the design matrix for model selection consistency, there are also several variants of the orig-

inal LASSO. For examples, the relaxed LASSO, Meinshausen (2007), uses two parameters to

separately control the model shrinkage and selection; the adaptive LASSO, Zou (2006), lever-

ages a simple adaptation procedure to shrink the irrelevant predictors to0 while keeping the

relevant ones properly estimated. Meinshausen and Yu (2009) suggested employ a two-stage

hard thresholding rule, in the spirit of the Gauss-Dantzig selector, Cand•s and Tao (2007), to

set very small coe"cients to 0.

Since the ground breaking work of Cand•s and Tao (2007) which provided non-asymptotic

upper bounds on thȩ
2

- estimation loss of the Dantzig selector with large probability, parallel

¸
2

error bounds were found for the LASSO estimator by Meinshausen and Yu (2009) under the

incoherent design condition and by Bickel, Ritov, and Tsybakov (2009) under the restricted

eigenvalue condition. In a previous work of Cand•s and Tao (2007), they showed that minimiz-

ing the ell
1

-norm of the coe"cient vector subject to the linear system constraint can exactly

recover the sparse patterns, provided the restricted isometry condition holds and the support

of the noise vector is not too large Cand•s and Tao (2005).

Cai, Xu, and Zhang (2009) tightened all previous error bounds for noiseless, bounded error and

Gaussian noise cases. These bounds are nearly optimal in the sense that they achieve within a

14



II.3 Least Angle Regression (LARS)

logarithmic factor the least squares errors as if the true model were known (oracle property).

Wainwright (2006) derived a set of sharp constraints on the dimensionality, sparsity of the model

and the number of observations for the Lasso to correctly recover the true sparsity pattern. The

¸Œ convergence rate of the LASSO estimator was obtained by Lounici (2008). Other bounds for

the sparsity oracle inequalities of the Lasso can be found in Bunea, Tsybakov, Wegkamp (2007).

Despite those appealing properties of the Lasso estimator and the advocacy of using the

LASSO, the LASSO estimate is not guaranteed to provide a satisfactory estimation and de-

tection performance, at least in some application scenarios. For instance, when the data are

corrupted by some outliers or the noise is extremely heavy-tailed, the variance of the LASSO

estimator can be quite large, usually become unacceptably large, even when the sample size

approaches inÞnity, Knight and Fu (2000). Asymptotic analysis, Knight and Fu (2000), and

non-asymptotic error bounds on the estimation loss, Bickel, Ritov, and Tsybakov (2009), both

suggest that the performance of the LASSO linearly deteriorates with the increment of the

noise power. A similar observation can sometimes be noted when the dimensionality of the

linear model is very high while the data size is much smaller.

3 Least Angle Regression (LARS)
Least Angle Regression is a promising technique for variable selection applications, o!ering

a nice alternative to stepwise regression. It provides an explanation for the similar behavior

of LASSO (̧
1

-penalized regression) and forward stagewise regression, and provides a fast im-

plementation of both. The idea has caught on rapidly, and sparked a great deal of research

interest. We write LAR for least angle regression, and LARS to include LAR as well as LASSO

or forward stagewise as implemented by least-angle methods .In the sequel, we give the algo-

rithm of Least Angle Regression . The LARS algorithm was proposed (and named) by Efron

et al. (2004), though essentially the same idea appeared earlier in the works of Osborne et al.

(2000).

3.1 Description of the Algorithm

The algorithm begins at ⁄ = * , where the lasso solution is trivially0 $ Rp. Then,as

the parameter ⁄ decreases, it computes a solution patĥ—
lars

(⁄) that is piecewise linear and

continuous as a function of⁄. Each knot in this path corresponds to an iteration of the

algorithm, in which the path s linear trajectory is altered in order to satisfy the KKT optimality

15



II.3 Least Angle Regression (LARS)

conditions.

The LARS algorithm recursively calculates a sequence of breakpoints* = ⁄
0

> ⁄
1

> ⁄
2

>

!!! = 0 with —̂(⁄) linear for each interval⁄
k+1

& ⁄ & ⁄
k

. The active set Ŝ of the coe"cients

changes, the incactive coe"cients stay Þxed at zero. DeÞne the residual vector and correlations

R(⁄) := Y " X—̂(⁄) and C
j

(⁄) := X€
j

R(⁄).

To get a true correlation we would have to divide by%R(⁄)%, which would complicate the

constraints.

The algorithm will ensure that

Y
___]

___[

C
j

(⁄) = +⁄ if —̂
j

(⁄) > 0 (constraint . )
C

j

(⁄) = " ⁄ if —̂
j

(⁄) > 0 (constraint / )
|C

j

(⁄)| < ⁄ if —̂
j

(⁄) > 0 (constraint 0 )

That is, for the minimizing —̂(⁄) each(⁄, C
j

(⁄)) needs to stay inside the regionR := { (⁄, c) $

R+ # R : |c| & ⁄} , moving along the top boundary(c = +⁄) when —̂
j

(⁄) > 0 (constraint . )

along the lower boundary(c = " ⁄) when —̂
j

(⁄) < 0 (constraint / ), and being any where inR

when —̂
j

(⁄) = 0 (constraint 0 ).

3.2 The Algorithm

The solution —̂(⁄) is to be constructed in a sequence of steps, starting with large⁄ and

working towards ⁄ = 0.

Step 1:
Start with Ŝ

0

= 1 and —̂ = 0 $ Rp. DeÞne⁄
1

= max
1ÆjÆp

|X€
j

Y |. Constraint 0 is satisÞed on

[⁄
1

, * ). For ⁄ ) ⁄
1

take —̂(⁄) = 0, so that |C
j

(⁄)| < ⁄
1

. Constraint 0 would be violated if we

kept —̂(⁄) equal to zero for⁄ < ⁄
1

; the —̂(⁄) must move away from zero as⁄ decreases below⁄
1

.

We must have|C
j

(⁄
1

)| = ⁄
1

for at least onej. For convenience of exposition, suppose that

|C
1

(⁄
1

)| = ⁄
1

> |C
j

(⁄
1

)| for all j ) 2. The active set becomes noŵS = 1.

For ⁄
2

& ⁄ < ⁄
1

, with ⁄
2

to be speciÞed soon, keep̂—
j

= 0 for j = 2 but let

—̂
1

(⁄) = 0 + v
1

(⁄
1

" ⁄),
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II.3 Least Angle Regression (LARS)

for some constantv
1

. To maintain the equalities

⁄ = C
1

(⁄) = X€
1

(Y " X
1

—̂
1

(⁄)) = C
1

(⁄
1

) " X€
1

X
1

v
1

(⁄
1

" ⁄) = ⁄
1

" v " 1(⁄
1

" ⁄)

we needv
1

= 1. This choice also ensures that̂—
1

(⁄) > 0 for a while, so that Constraint . is

the relevant constraint for —̂
1

(⁄).
For ⁄ < ⁄

1

, with v
1

= 1 we haveR(⁄) = Y " X
1

(⁄
1

" ⁄) and

C " j(⁄) = C " j(⁄ " 1) " a " j(⁄
1

" ⁄) where a
j

:= X
j

X
1

.

Notice that |a
j

| < 1 unlessX
j

= ± X
1

. Also, as long asmax
jÆ2

|C
j

(⁄)| & ⁄ the other —̂
j

(⁄) is s

still satisfy constraint 0 .

We need to end the Þrst step at⁄
2

, the largest ⁄ less than⁄
1

for which max
jØ2

|Cj(⁄)| = ⁄.

Solve forC
j

(⁄) = ± ⁄ for each Þxedj & 2 :

⁄ = ⁄
1

" (⁄
1

" ⁄) = C " j(⁄
1

) " a " j(⁄
1

" ⁄) " ⁄ = " ⁄
1

+ (⁄
1

" ⁄) = C " j(⁄
1

) " a
j

(⁄
1

" ⁄)

if and only if

⁄
1

" ⁄ = (⁄
1

" C
j

(⁄
1

))/(1 " a " j)⁄
1

" ⁄ = (⁄
1

+ C
j

(⁄
1

))/(1 + a
j

).

Both right-hand sides are strictly positive. Thus⁄
2

= ⁄
1

" ”⁄ where

”⁄ := min
jØ2

;
⁄

1

" C
j

(⁄
1

))
1 " a

j

2
⁄

1

+ C
j

(⁄
1

))
1 + a

j

<
.

Step 2:
We haveC

1

(⁄
2

) = ⁄
2

= max
jØ2

|C
j

(⁄
2

)|, by construction. For convenience of exposition, sup-

pose|C
2

(⁄
2

)| = ⁄
2

> |C
j

(⁄
2

)| for all j ) 3. The active set now becomeŝS = { 1, 2} .

For ⁄
3

& ⁄ < ⁄
2

and a newv
1

and v
2

, deÞne

—̂
1

(⁄) = —̂
1

(⁄
2

) + (⁄
2

" ⁄)v
1

—̂
2

(⁄) = 0 + (⁄
2

" ⁄)v " 2

17



II.3 Least Angle Regression (LARS)

with all other —̂
j

(⁄) still zero. Write Z for (X1, X2). The newC
j

become

C
j

(⁄) = X€
j

3
Y " X

1

—̂
1

(⁄) " X
2

—̂
2

(⁄)
4

= C
j

(⁄
2

) " (⁄
2

" ⁄)X€
j

ZvÕ,

wherevÕ = (v1, v2).

Let ⁄
3

be the largest⁄ less than⁄
2

for which max
jØ3

|C
j

(⁄)| = ⁄.

General Step:
At each ⁄

k

a new active setŜ
k

is deÞned. During thekth step the parameter⁄ decreases from

⁄
k

to ⁄
k+1

. For all j in the active set Ŝ
k

, the coe"cients —̂
j

(⁄) change linearly and theC
j

(⁄)
move along one of the boundaries of the feasible region:C

j

(⁄) = ⁄ if —̂
j

(⁄) > 0 and C
j

(⁄) = " ⁄

if —̂
j

(⁄) < 0. For each inactivej the coe"cient —̂
j

(⁄) > 0 remains zero throughout[⁄
k+1

, ⁄
k

].
Step k ends when either an inactiveC

j

(⁄) hits a ± ⁄ boundary or if an active —̂
j

(⁄) becomes

zero: ⁄
k+1

is deÞned as the largest⁄ less than⁄
k

for which either of these conditions holds:

Ñ (i) max
j /œ ˆ

S

k

|C
j

(⁄)| = ⁄. In that case add the newj $ Ŝc

k

for which |C
j

(⁄
k+1

)| = ⁄
k+1

to

the active set, then proceed to stepk + 1.

Ñ (ii) —̂
j

(⁄) = 0 for somej $ Ŝ
k

. In that case, removej from the active set, then proceed

to step k + 1.

Two basic properties of the LARS lASSO path, as mentioned in the previous section, are

piecewise linearity and continuity with respect to⁄. The algorithm and the solutions along its

computed path possess a few other nice properties. We begin with a property of the LARS

algorithm itself.

Lemma 3.1 For any Y, X, the LARS algorithm for the lasso path performs at most

pÿ

k=0

(
Q

a p

k

R

b 2k = 3p

iterations before termination.

Lemma 3.2 For any Y, X, the LARS lASSO solution converges to a minimum ¸
1

-norm least
squares solution as ⁄ , 0+, that is,

lim
⁄æ0

+
—̂

lars

(⁄) = —̂
ls,¸1

, where —̂
ls,¸1 $ arg min

—œRp %Y " X—%2

2

and achieves the minimum ¸
1

norm over all such
solutions.
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II.3 Least Angle Regression (LARS)

The proofs of this too lemmas can be found in Tibshirani(2012).

Remark LARS has considerable promise, o!ering speed, interpretability, relatively stable pre-

dictions, nearly unbiased inferences, and a nice graphical presentation of coe"cient paths. But

considerable work is required in order to realize this promise in practice. A number of di!erent

approaches have been suggested, both for linear and nonlinear models; further study is needed

to determine their advantages and drawbacks. Also various implementations of some of the

approaches have been proposed that di?er in speed, numerical stability, and accuracy; these

also need further assessment.
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Chapter III

Multiple Change-Point Estimation
with Total-Variation Penalization

In this chapter, our study will based on the article of Harchaoui and Levy (2010). Change-

points detection tasks are pervasive in various Þelds. The goal is to partition a signal into several

homogeneous segments of variable durations, in which some quantity remains approximately

constant over time. The authors propose a new approach for dealing with the estimation of

the location of change-points in one-dimensional piecewise constant signals observed in white

noise. Their approach consists in reframing this task in a variable selection context. They use

a penalized least-squares criterion with a̧
1

-type penalty for this purpose. They prove some

theoretical results on the estimated change-points and on the underlying piecewise constant

estimated function. Then, they explain how to implement this method in practice by using the

LARS algorithm.

1 Estimation of the Means
We are interested in the estimation of the change-point locationstı

k

in the following model:

Y
______]

______[

Y
t

= µı

k

+ Á
t

,

tı

k≠1

& t & tı

k

" 1,

k = 1, ..., Kı + 1,

t = 1, ..., n,

(III.1)

with the convention tı

0

= 1 and tı

K

ı

+1

= n+1 and where the{ Á
t

}
0ÆtÆn

are iid zero-mean random

variables, having a sub-Gaussian distribution.

We consider here the multiple changes in the mean problem as described inIII.1. Our purpose

20



III.1 Estimation of the Means

is to estimate the unknown meansµı

1

, ..., µı

K+1

together with the change points from observations

Y
1

, ..., Y
n

. Let us Þrst work with the LASSO formulation to establish the consistency in terms

of means estimation. The modelIII.1 can be rewritten as

Y n = X
n

—n + Án, (III.2)

whereY =

Q

ccca

Y
1

...

Y
n

R

dddb is the n # 1 vector of observations,X
n

the n # n lower triangular matrix

with nonzero elements equal to one, i.e.

X
n

=

Q

ccccccca

1 0 á á á0
1 1 . . .

...
...

...
. . . 0

1 1 á á á1

R

dddddddb

and Án =

Q

ccca

Án

1

...

Án

n

R

dddb is a zero mean random vector such that the enÁn

1

, ..., Án

n

are iid random

variables with Þnite variance equal to‡2 .As for —n it is a n# 1 vector having all its components

equal to zero except those corresponding to the change-points instants. Let us denote byS

the set of nonzero components of—
n

also the support set of—
n

and by its complementary set

deÞned as follows:

S = { k : —n

k

'= 0} and Sc := 1, ..., n " S. (III.3)

With the reformulation III.2, the evaluation of the means estimation rate amounts to Þnding

the rate of convergence of%X
n

(—̂n(⁄
n

) " —n)%to zero, —̂n(⁄
n

) satisfying:

—̂n(⁄
n

) =

Q

ccca

—̂
1

n(⁄
n

)
...

—̂
n

n(⁄
n

)

R

dddb = arg min
—œRn

{%Y n " X
n

—%2

n

+ ⁄
n

%—%
1

} . (III.4)

Hence, within this framework, we are able to prove the following result regarding the consistency

in means estimation of least square-total variation.

Proposition 1.1 Consider Y
1

, ..., Y
n

a set of observations following the model described in
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III.1 Estimation of the Means

III.2. Assume that the Án

1

, ..., Án

n

are iid Gaussian random variables with the variance ‡2 > 0.
Assume also that there exists —

max

such that for all k in A, |—n

k

| & —
max

the set A being defined
in III.3. Then, for all n ) 1 and C > 2

-
2, we obtain that with a probability larger than

1 " n1≠ C

2
8 , if ⁄

n

= C‡
Ò

log n

n

,

%X
n

(—̂n(⁄
n

) " —n)% &(2C‡—
max

Kı) 1
2
1 log n

n

2 1
4 .

Proof. By the deÞnition of —̂n(⁄
n

) given by III.4, we have

%Y n " X
n

—̂(⁄
n

)%2

n

+ ⁄
n

%̂—(⁄
n

)%
1

& %Y n " X
n

—%2

n

+ ⁄
n

%—%
1

.

Using III.2, we get

%X
n

(—n " —̂n(⁄
n

))%2

n

+ 2
n

(—n " —̂n(⁄
n

))€X€
n

Án + ⁄
n

nÿ

k=1

|—̂n

k

(⁄
n

)| & ⁄
n

nÿ

k=1

|—n

k

|.

Therefore,

%X
n

(—n " —̂n(⁄
n

))%2

n

&
2
n

(—̂n(⁄
n

) " —n)€X€
n

Án + ⁄
n

ÿ

jœS

(|—n

j

| " | —̂n

j

(⁄
n

)|) " ⁄
n

ÿ

jœS

c

—̂n

j

(⁄
n

).

Observe that
2
n

(—̂n(⁄
n

) " —n)€X€
n

Án = 2
nÿ

j=1

(—̂n

j

(⁄
n

) " —n

j

)
3 1

n

nÿ

i=j

Án

i

4
.

Let us deÞne the event

E :=
n‹

ju1

Ó 1
n

----
nÿ

i=j

Án

i

---- &
⁄

n

2
Ô
.

Then, given that the Án

1

, ..., Án

n

are iid zero mean Gaussian variables with Þnite variance equal

to ‡2, we obtain that

P(Ec) =
nÿ

j=1

P
3 1

n

----
nÿ

i=j

Án

i

---- >
⁄

n

2

4

&
nÿ

i=j

exp
3

"
n2⁄2

n

8‡2(n " j + 1)

4
.

Hence, if⁄
n

= C‡
Ò

log n

n

,

P(Ec) & n1≠ C

2
8 .
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With a probability larger than 1 " n1≠ C

2
8 , we get

%X
n

(—n " —̂n(⁄
n

))%2

n

& ⁄
n

nÿ

j=1

|—̂n

j

(⁄
n

) " —n

j

| + ⁄
n

ÿ

jœS

(|—n

j

| " | —̂n

j

(⁄
n

)|) " ⁄
n

ÿ

jœS

c

—̂n

j

(⁄
n

),

whereS and Sc are deÞned inII.4. Given that

nÿ

j=1

|—̂n

j

(⁄
n

) " —n

j

| =
ÿ

jœS

|—̂n

j

(⁄
n

) " —n

j

| "
ÿ

jœS

c

—̂n

j

(⁄
n

),

we obtain that, with a probability larger than 1 " n1≠ C

2
8 ,

%X
n

(—n " —̂n(⁄
n

))%2

n

& 2⁄
n

ÿ

jœS

|—n

j

|

= 2C‡

Û
log n

n

ÿ

jœS

|—n

j

|

& 2C‡—
max

Kı

Û
log n

n
.

Which gives the desired result.

Note that in Proposition 1.1, where no upper bound on the number of change points is

assumed to be known, we do not attain the known (parametric optimal rate which is of order
1Ô
n

derived by Yao and Au (1989) where an upper bound for the number of change points is

available. But, as we shall see in Proposition 2,the rate of Proposition 1 can be improved if the

model and the criterion are rewritten in a di!erent way and if an upper bound for the number

of change points is available.

Indeed, let us now work in the standard formulation of least squares total variation (LS-TV)

instead of its LASSO counterpart, and write modelIII.1 as

Y
______]

______[

Y
t

= uı

t

+ Á
t

,

uı

t

= µı

k

, tı

k≠1

& t & tı

k

" 1,

k = 1, ..., Kı + 1,

t = 1, ..., n,

(III.5)
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III.1 Estimation of the Means

The vector uı(⁄
n

) =

Q

ccca

uı

1

(⁄
n

)
...

uı

n

(⁄
n

)

R

dddb can be estimated by using a criteria based on total varia-

tion penalty as following:

û(⁄
n

) =

Q

ccca

û
1

(⁄
n

)
...

û
n

(⁄
n

)

R

dddb = arg min
uœRn

;
||Y n " u||2

n

+ ⁄
n

n≠1ÿ

i=1

|u
i+1

" u
i

|
<

(III.6)

The following proposition gives the rate of convergence ofû(⁄
n

) when an upper bound for the

number of change points is known and equal toK
max

.

Proposition 1.2 Consider Y
1

, ..., Y
n

a set of observations following the model described in
III.5 where the Án

1

, ..., Án

n

are iid zero mean Gaussian variables with finite variance equal to
‡2 > 0. Assume also that û(⁄

n

) defined in III.6 belongs to a set of dimension at most K
max

" 1.
Then, for all n ) 1, A $ (0, 1) and B > 0, if ⁄

n

= ‡(A
Ô

B

2

(K
max

log n) 1
2 n≠ 3

2 " ‡(2K
max

+1) 1
2 n≠ 3

2 ,

P
3

%̂u " uı%
n

) ‡(BK
max

log n

n
) 1

2

4
& K

max

n{1≠ B(1≠A)2
8 }K

max . (III.7)

Proof. For notational simplicity, we shall remove the dependence of̂u in ⁄
n

. By deÞnition

ofû as a minimizer of the criterionIII.6, we get:

%Y n " û%2

n

+ ⁄
n

n≠1ÿ

i=1

|û
i+1

" û
i

| & %Y n " uı%2

n

+ ⁄
n

n≠1ÿ

i=1

|uı

i+1

" uı

i

|.

Using ModelIII.5, the previous inequality can be rewritten as follows:

%̂u " uı%2

n

& 2n⁄
n

%̂u " uı%2

n

+ 2
n

ÿ

i=1

Á
n

(û
i

" uı

i

).

Using the Cauchy Schwarz inequality, we obtain

%̂u " uı%2

n

& 2n⁄
n

%̂u " uı%2

n

+ 2
n

ÿ

i=1

Á
n

(û
i

" uı

i

).

Thus, deÞningG()̇ fro v $ Rn by

G(v) :=

3 ÿ

i=1

Á
i

(v
i

" uı

i

)
4

‡
-

n%v " uı%
n

.
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III.1 Estimation of the Means

We have

%̂u " uı%2

n

& 2n⁄
n

%̂u " uı%2

n

+ 2‡
-

n
%̂u " uı%

n

G(û).

Let { S
K

}
1ÆKÆK

max

be the collection of linear spaces to whicĥu may belong,S
K

denoting a

space of dimensionK. Then, given that the number of sets of dimensionK is bounded bynK ,

we obtain

P
3

%̂u " uı%
n

) –
n

4
& P

3
n⁄

n

+ ‡n≠ 1
2 G(û) )

–
n

2

4

&
K

maxÿ

K=1

nKP
3

sup
vœS

K

G(v) ) n
1
2 ‡≠1

–
n

2 " n
3
2 ‡≠1⁄

n

4
. (III.8)

Using that, V ar(G(v)) = 1, for all v in Rn, we obtain by using an inequality due to

Cirelson,Ibragimov,and Sudakov in the same way as in the proof of theorem 1 in BirgÌ©
and Massart (2001), that for all“ > 0,

P
3

sup
vœS

K

G(v) ) E[ sup
vœS

K

G(v)] ) +“
4

& exp(" “

2 ). (III.9)

Let us now Þnd an upper bound forE[sup
vœS

K

G(v)]. Denoting by W the D" dimensional space

to which v " uı belongs and some orthogonal basisÂ
1

, ..., Â
D

of W, we obtain

sup
vœS

K

G(v) & sup
wœW

nÿ

i=1

Á
i

w
i

‡
-

n%w%
n

= sup
–œRD

nÿ

i=1

Á
i

1 Dÿ

j=1

–
j

Â
j,i

2

‡
-

n%
Dÿ

j=1

–
j

Â
j,i

%
n

= sup
–œRD

nÿ

i=1

Á
i

1 Dÿ

j=1

–
j

Â
j,i

2

‡
-

n
1 Dÿ

j=1

–2

j

2 1
2

.
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III.1 Estimation of the Means

Using the Cauchy Schwarz inequality, we derive

sup
vœS

K

G(v) & sup
–œRD

nÿ

i=1

Á
i

1 Dÿ

j=1

–
j

Â
j,i

2

‡
-

n
1 Dÿ

j=1

–2

j

2 1
2

(III.10)

&
1
‡2n

2≠ 1
2

Y
]

[

Dÿ

j=1

Q

a
nÿ

i=1

Á
i

Â
j,i

R

b
2

Z
^

\

1
2

. (III.11)

By the concavity of the square-root function and by using thatD & K
max

+Kı+1 = 2K
max

+1,

we get

E
5

sup
vœS

K

G(v)
6

& (2K
max

+ 1) 1
2 . (III.12)

Using III.8, III.9, and III.12 with “ = n
1
2 ‡≠1

–

n

2

" n
3
2 ‡≠1 # ⁄

n

" (2K
max

+ 1) 1
2 , we have

P
3

%̂u " uı%
n

) –
n

4
& K

max

exp
Y
]

[K
max

log n "
1
2

Q

an
1
2 –

n

2‡
" n

3
2 ‡≠1⁄

n

" (2K
max

+ 1) 1
2

R

b
2

Z
^

\,

which is valid only if “ = n

1
2

–

n

2‡

" n
3
2 ‡≠1⁄

n

" (2K
max

+ 1) 1
2 is positive. Hence, writing fro a

constant A in (0, 1),

n
3
2 ‡≠1⁄

n

+ (2K
max

+ 1) 1
2 = A

n
1
2 –

n

2‡
.

It yields,

P
3

%̂u " uı%
n

) –
n

4
& K

max

exp
Y
]

[K
max

log n "
(1 " A)2

8
n–2

n

‡2

Z
^

\.

Therefore, if –
n

= (B‡2K
max

log n

n

) 1
2 , we obtain the expected result.

The rate of convergence that we obtain for the estimation of the means is almost optimal up

to a logarithmic factor since the optimal rate derived by Yao and Au(1989)isO(n≠ 1
2 ).

Let us now study the consistency in terms of change-point estimation, which is more of

interest in this article. Again, we shall see that the LASSO formulation is less relevant than

the standard formulation for establishing the change-point estimation consistency.
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III.2 Estimation of the Change-Point Locations

2 Estimation of the Change-Point Locations
In this section, we aim at estimating the change-point locations from the observations

(Y
1

, ..., Y
n

) satisfying Model III.2. The change-point estimates that we propose to study are

obtained from the —̂
j

(⁄
n

) is satisfying the criterion III.4 as follows. Let us deÞne the set of

active variables by

Ŝ(⁄
n

) := { j $ { 1, ..., n} : —̂
j

(⁄
n

) '= 0} .

Moreover, we deÞne the change-point estimators bŷt
j

(⁄
n

) satisfying

Ŝ(⁄
n

) =
;

t̂
1

(⁄
n

), ..., t̂| ˆ

S(⁄

n

)|(⁄n

)
<

,

where

t̂
1

(⁄
n

) < ... < t̂| ˆ

S(⁄

n

)|(⁄n

),

|Ŝ(⁄
n

)| denoting the cardinal of the setŜ(⁄
n

).
With such a reformulation of the change point in the mean problem, the change-point estimates

can be seen as Lasso-type estimates in a sparse framework.

Let us now detail the assumptions under which the becoming theoretical results in the sequel

are established. DeÞne

Iı

min

= min
1ÆkÆK

ı

|tı

k+1

" tı

k

|, Jı

min

= min
1ÆkÆK

ı

|µı

k+1

" µı

k

|.

We impose the following assumptions.

Assumption 1: The Á
1

, ..., Á
n

are iid zero-mean random variables with Var[Á
1

] = ‡2 satisfying:

there exisits a positive constant— such for all v $ R,

E[exp(vÁ
1

)] & exp(—v2).

Assumption 2: The sequence{ ”
n

}
nØ1

is a nonincreasing and positive sequence tending to

zero as n tends to inÞnity and satisfying

n”
n

(Jı

min

)2

log n
, * , as n , * .
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III.2 Estimation of the Change-Point Locations

Assumption 3: The change pointstı

1

, ..., tı

K

ı

satisfy

n”
n

& Iı

min

, for all n ) 1.

Assumption 4: The sequence of regularization parameters{ ⁄
n

}
nØ1

is such that

n⁄
n

n”
n

Jı

min

, 0, as n , * .

We Þrst state a lemma arising from the Karush Kuhn Tucker (KKT) conditions of the

optimization problem stated in III.4 which will be useful in the proof of the consistency of the

procedure in the sequel.

Lemma 2.1 Consider Y
1

, ..., Y
n

a set of observations following the Model(2). Then, the change-
points estimators (t̂

1

(⁄
n

), ..., t̂
n

(⁄
n

)) and (û
1

(⁄
n

), ..., û
n

(⁄
n

))€ defined by û
i

(⁄
n

) = (X
n

—̂n)
i

,

where X
n

is a n # n matrix nonzero elements equal to one and the(—̂n)
1ÆiÆn

are obtained by...,
satisfy

nÿ

i=

ˆ

t

¸

(⁄

n

)

Y
i

"
nÿ

i=

ˆ

t

l

(⁄

n

)

û
i

= n⁄
n

2 –̂
¸

, 3¸ = 1, ..., |Ŝ(⁄
n

)|. (III.13)

and ------

nÿ

i=j

Y
i

"
nÿ

i=j

û
i

------
&

n⁄
n

2 , 3j = 1, ..., n. (III.14)

Using the convention, Y
]

[
–̂

¸

= +1, û
ˆ

t

¸

(⁄

n

)

> û
ˆ

t

¸

(⁄

n

)≠1

;
–̂

¸

= " 1, otherwise.

The vector û(⁄
n

) = (û
1

(⁄
n

), ..., û
n

(⁄
n

))€ has the following additional property:
Y
]

[
û

t

(⁄
n

) = µ̂
k

, t̂
k≠1

(⁄
n

) & t & t̂
k

(⁄
n

) " 1,

k = 1, ..., |Ŝ(⁄
n

)| + 1.
(III.15)

Proof. A necessary and su"cient condition for a vector—̂ in Rn to minimize the function "

deÞned by

"( —) :=
nÿ

i=1

(Y
i

" (X
n

—)
i

)2 + n⁄
n

nÿ

i=1

|—
i

|,

is that the zero vector inRn belongs to the subdi!erential of"( —) at the point —̂, that is, the
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following KKT Optimality conditions

Y
__]

__[

3
X€

n

1
Y

n

" X
n

—̂
24

j

= n⁄

n

2

sign(—̂
j

), if —̂
j

'= 0,
----(X€

n

1
Y

n

" X
n

—̂
24

j

---- & n⁄

n

2

sign(—̂
j

), if —̂
j

= 0.

Using that (X€
n

Y
n

)
j

= q
n

k=j

Y
k

and that (X€
n

û)
j

= q
n

k=j

û
k

, sinceX
n

is an# n lower triangular

matrix having all its nonzero elements equal to one, we obtain the expected result.

Now, we state a lemma which allows us to control the supremum of the average of the noise

and which will also be useful for proving the consistency of our estimation criterion.

Lemma 2.2 Let { Á
i

}
1ÆiÆn

be a sequence of random variables satisfying Assumption 1. If
{ v

n

}
nØ1

and { x
n

}
nØ1

are two positive sequence such that v

n

x

2
n

log n

, * as n , * , then

P
Q

a max
1Ær

n

<s

n

Æn; |r
n

≠s

n

|Øv

n

------
(s

n

" r
n

)≠1

s

n

≠1ÿ

i=r

n

Á
i

------
) x

n

R

b , 0, as n , * . (III.16)

Proof. In the remainder, for any sequence of random variables, say,Z
1

, ..., Z
n

, we shall use

the following notation:

Z(r; s) :=
sÿ

i=r

Z
i

for any1 & r < s & n. (III.17)

Using the notation introduced in III.17, we have

P
Q

a max
1Ær

n

<s

n

Æn; |r
n

≠s

n

|Øv

n

------
Á(r

n

; s
n

" 1)
(s

n

" r
n

)

------
) x

n

R

b &
ÿ

1Ær

n

<s

n

Æn; |r
n

≠s

n

|Øv

n

P

Q

a

------
Á(r

n

; s
n

" 1)
(s

n

" r
n

)

------
) x

n

R

b.

Using Assumption 1, it yields that for all ” > 0,

P
Q

aÁ(r
n

; s
n

" 1)
(s

n

" r
n

) ) x
n

R

b & exp
;

" ”(s
n

" r
n

)x
n

<3
E[exp(”Á]

4{
s

n

" r
n

}

& exp
;

" ”(s
n

" r
n

)x
n

+ —”2(s
n

" r
n

)
<

.
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Since the sharpest bound holds for” = x

n

2—

, we get

P
Q

aÁ(r
n

; s
n

" 1)
(s

n

" r
n

) ) x
n

R

b & exp
;

" x2

n

(s
n

" r
n

)
4—

<
.

Since the same bound is valid whenÁ
i

is replaced by" Á
i

, we have that

P

Q

a

------
Á(r

n

; s
n

" 1)
(s

n

" r
n

)

------
) x

n

R

b & 2 exp
;

" x2

n

(s
n

" r
n

)
4—

<
.

Therefore, it yields that

P
Q

a max
1Ær

n

<s

n

Æn; |r
n

≠s

n

|Øv

n

------
Á(r

n

; s
n

" 1)
(s

n

" r
n

)

------
) x

n

R

b & 2 exp
;

" x2

n

(s
n

" r
n

)
4—

<
,

which completes the proof.

Proposition 2.1 Let Y
1

, ..., Y
n

be a set of observations satisfying Model III.1 then under
the Assumptions 1 to 4, the change-points estimators { t̂

1

(⁄
n

), ..., t̂| ˆ

S(⁄

n

)|(⁄n

)}
nØ1

satisfy, if
|Ŝ(⁄

n

)| = Kı with probability tending to one:

P
3

max
1ÆkÆK

ı

|t̂
k

" tı

k

| & n”
n

4
, 1, n , * . (III.18)

Proof. Since

P( max
1ÆkÆK

ı

|t̂
k

" tı

k

| > n”
n

) &
K

ıÿ

k=1

P (|t̂
k

" tı

k

| > n”
n

),

it su"ces to prove that for all k = 1, ..., Kı,

Y
]

[
P(A

n,k

) , 0,

whereA
n,k

:= {| t̂
k

" tı

k

| ) n”
n

)} .

DeÞning the setC
n

by

C
n

:=
;

max
1ÆkÆK

ı

|t̂
k

" tı

k

| <
Iı

min

2

<
. (III.19)

Hence, it is enough to prove, simultaneously, that

Y
]

[
P(A

n,k

4 C
n

) , 0, n , * ,

P(A
n,k

4 Cc
n

) , 0, n , * .
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Note that ( III.19) implies that

tı

k≠1

< t̂
k

< tı

k+1

, for all k = 1, ..., Kı. (III.20)

Let us consider the Þrst case wherêt
k

& tı

k

.

We begin by proving the Þrst statement, i.e.,P(A
n,k

4 C
n

) , 0, as n , * .

Applying refeq : III12 in Lemma 2.1 (KKT) with j = tı

k

and III.14 in Lemma 2.1 with ¸ = k

gives, respectively, ------

nÿ

i=t

ı

k

Y
i

"
nÿ

i=t

ı

k

û
i

------
&

n⁄
n

2 ,

and
nÿ

i=

ˆ

t

k

(⁄

n

)

Y
i

"
nÿ

i=

ˆ

t

k

(⁄

n

)

û
i

= n⁄
n

2 –̂
l

.

Using the additional property of the û
i

we get that for all k = 1, ..., Kı,

Y
_____]

_____[

" n⁄

n

2

&
nÿ

i=t

ı

k

Y
i

"
nÿ

i=t

ı

k

û
i

&
n⁄

n

2

" n⁄

n

2

&
nÿ

i=

ˆ

t

k

(⁄

n

)

Y
i

"
nÿ

i=

ˆ

t

k

(⁄

n

)

û
i

&
n⁄

n

2

It implies that

" n⁄
n

&
t

ı

k

≠1ÿ

i=

ˆ

t

k

(⁄

n

)

Y
i

"
t

ı

k

≠1ÿ

i=

ˆ

t

k

(⁄

n

)

û
i

& n⁄
n

.

Hence, by using the Model(2),

------

t

ı

k

≠1ÿ

i=

ˆ

t

k

(⁄

n

)

(Á
i

+ µı

k

) "
t

ı

k

≠1ÿ

i=

ˆ

t

k

(⁄

n

)

û
i

------
& n⁄

n

,

also we have
----(tı

k

" t̂
k

)µı

k

+ Á(t̂
k

; tı

k

" 1) "
ˆ

t

k+1≠1ÿ

i=

ˆ

t

k

(⁄

n

)

û
i

+
ˆ

t

k+1≠1ÿ

i=t

ı

k

û
i

---- & n⁄
n

.

So ----(t̂k

" tı

k

)(µı

k+1

" µı

k

) + Á(t̂
k

; tı

k

" 1) + (t̂
k

" tı

k

)(µ̂
k+1

" µı

k+1

)
---- & n⁄

n

.
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Therefore onC
n

4 { t̂
k

& tı

k

} we have

----(t̂k

" tı

k

)(µı

k+1

" µı

k

) + Á(t̂
k

; tı

k

" 1) + (t̂
k

" tı

k

)(µ̂
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" µı

k+1

)
---- & n⁄

n

.

DeÞning the event

C
n,k

:=
----(t̂k

" tı

k

)(µı

k+1

" µı

k

) + Á(t̂
k

; tı

k

" 1) + (t̂
k
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k

)(µ̂
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)
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n

.

It follows that

C
n
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k

& tı

k

} 5 C
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,
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A
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4 C
n
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k

& tı

k
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n,k

4 C
n
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k
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k
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n,k

.

Therefore,
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4 C
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)(µı
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k
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k

|
3 } 4 { t̂
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Since we are in the eventC
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* , as n tends to inÞnity. The last two conditions hold thanks toAssumptions 2, 3 and 4.

Since the proof in the casêt
k

) tı

k
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where
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Let us now prove that the Þrst term in the right hand side of (1.9) tends to zero asn tends to

inÞnity , the argumetns for adressing the other terms being similar.
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and in the other hand

|t̂
k+1

" tı

k

| = |(tı

k+1

" tı

k

) " (tı

k+1

" t̂
k+1

)|
) | tı

k+1

" tı

k

| " | tı

k+1

" t̂
k+1

|

) Iı

min

" | t̂
k+1

" tı

k+1

|

)
Iı

min

2

DeÞning the evenE
n

by

E
n

:= {| µı

k+1

" µı

k

| &
n⁄

n

n”
n

+ 2n⁄
n

Iı

min

+ (tı

k

" t̂
k

)≠1|Á(t̂
k

; tı

k

" 1)| + (t̂
k+1

" tı

k

)≠1|Á(tı

k

; t̂
k+1

" 1)|} ,

E
n

occurs with probability equal to one. Therefore we obtain

P(A
n,k

4 B
k+1,k

4 D(m)

n

) & P(E
n

4 { (tı

k

" t̂
k

) ) n”
n

} 4 { (t̂
k+1

" tı

k

) )
Iı

min

2 } )

& P(n⁄
n

n”
n

)
|µı

k+1

" µı

k

|
4 )

+P(2n⁄
n

Iı

min

)
|µı

k+1

" µı

k

|
4 )

+P({ (tı

k

" t̂
k

)≠1|Á(t̂
k

; tı

k

" 1)| )
|µı

k+1

" µı

k

|
4 } 4 { tı

k

" t̂
k

) n”
n

}

+P({ (t̂
k+1

" tı

k

)≠1|Á(tı

k

; t̂
k+1

" 1)| )
|µı

k+1

" µı

k

|
4 } 4 { t̂

k+1

" tı

k

)
Iı

min

2 } ).

By Assumptions 2, 3 and 4, P(A
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Let us now focus onP(A
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Straightforward,
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Consider one term of the sum in the right-hand side ofrefeq : III16 . Using III.22 and III.23
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with k = m, we obtain
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Let us now consider the last term in the right hand ofIII.24. By using the observationsIII.22
and III.23 with k = Kı leads to
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In a similar way, we can prove thatP(D
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(r)) , 0, asn , * which yields that P(A
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and concludes the proof.

Under the assumptions of Proposition 2.1, thê·
k

deÞned for allk $ { 1, ..., Kı} by t̂
k

= [n·̂
k

]
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are consistent estimators of the· ı
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3 Estimation of the change-Point’s Number
In Proposition 2.1, the number of estimated change points is assumed to be equal to the

number of change points. since this information is not in general available, the authors propose
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Proof. By Lemma 2 of Meinshausen and Yu (2009), it yields with probability tending to one
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, It is enough to prove that
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The Þrst term of the right-hand side ofIII.28 tends to zero asn tends to inÞnity since it is
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Therefore, we may upper boundP
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Note that with ”n = (log n)
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4 Least Squares-Total Variation with LARS
In this section, we detail the process of the LARS implemented to the method of LS-TV. For
the sake of simplicity, one can shall describe here the algorithm where he looks for Kmax change
points, Kmax being a known upper bound on the true number of change points
Suppose that we have performed k ≠ 1 iterations in the algorithm, then the current set
of estimated change points, that is, the active set in the variable selection framework, is
öTn,k≠1

=
!

öt
1

, ..., ötk≠1

"
and the current set of estimated segment levels is

!
öu

1

(k≠1), ..., öun(k≠1)
"
.

We are now describing the computational requirements of the kth iteration of the algorithm.
First, we look to the next change point ötk to add to öTn,k≠1

yielding the largest discrepancy
with the true signal. This requires, given

!
öu

1

(k ≠ 1), ..., öun(k ≠ 1)
"
, the computation of the

n cumulative sums
# n$

i =j

öui (k ≠ 1)
%

j =1,...,n
. These cumulative sums may actually be computed

in O(n) operations in time, using the simple recursion
n$

i =j

öui (k ≠ 1) =
n$

i =j +1

öui (k) + öuj (k). Be-

sides, to be included in the current set of change point estimates (active set), we need to locate
the new change point estimate with regard to the other change-point estimates, which is for-
mally equivalent to sort the set of observations. Therefore, the Change-Point Addition step has
O(n + log(n)) time complexity.
Second, we have to compute the descent direction, which involves the multiplication of the in-
verse of k◊ k-matrix by a k-long vector. Indeed, Xk is a matrix which consists of the columns
of X indexed by the element of öTn,k and 1k denotes the vector of dimension k with each compo-
nent equal to one. Given the current set of change-points öTn,k , the inverse maybe computed in
O(k2) operations, since the entries of the inverse matrix of size k◊k are available in close form
beforehand. Then, the multiplication of k◊k-inverse by 1k is computed in O(k2) operations. If
k < Kmax , then the time complexity of Descent Direction Computationstep is upper bounded
by O(K2

max ).

Third, we search for the descent step. For similar reasons as for the first step, the Descent Step

Search step may be performed in linear time O(n) time complexity. Indeed, again, this step
involves the computation of n cumulative sums, which may be computed recursively.
Fourth, we check the zero crossing of the coe! cients to exactly track the regularization path of
the LASSO. In this step, –j = sign(öuj +1

(k) ≠ öuj (k)) . Again, all computations involved in this

42



III.4 Least Squares-Total Variation with LARS

step hinge on cumulative sums as previously in the first step, and therefore may be performed
in O(n) time complexity. Note that the maximum number of iterations N needed in practice to
decrease ö“ to a small enough value to satisfy ö“ = &“ is unknown in general, and no theoretically
grounded upper bound on N was provided in the literature so far.
Finally, the implementation of LS-TV based upon the LAR/LASSO algorithm runs in at most
O(K3

max + Kmax n log(n)) in time.

LS-TV with LAR/LASSO
Initialization , k = 0 .
(a) Set öTn,0 = ÿ.
(b) Set öui (0) = 0 , for all i = 1 , ..., n.
While k < Kmax .

(a) Change-Points Addition:
Find ötk such that

ötk = arg max
tœ{1,...,n }≠ ˆT

n,k≠1

'
'
'
'

n$

i =1

Yi ≠
n$

i =1

öui (k ≠ 1)
'
'
'
' .

(b) Descent Direction Computation:

wk =
(
X€k Xk

) ≠1

1k .

(c) Descent Step Search:
Search for ö“ such that

ö“ = min
tœ{1,...,n }≠ ˆT

n,k

*

+

n$

i =t

(Yi ≠
n$

i =t

öui (k))

1≠
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,
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(Yi +
n$

i =t

öui (k))

1 +
n$

i =t

wk,i

,

- .

(d) Zero-Crossing Check:
If

ö“ > &“ := min
j

(
–j wk,i

) ≠1

. n$

i =t

öui (k)
/

,

then decrease ö“ down to ö“ = &“, and remove &t from öTn,k , where

&t := arg min
j

(
–j wk,i

) ≠1

. n$

i =t

öui (k)
/

.
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