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Weighted and unweighted TV

For a chosen positive vector of weights ŵ , we define the
(discrete) weighted total-variation (TV) by

‖β‖TV,ŵ =

p∑
j=2

ŵj |βj − βj−1|, for all β ∈ Rp.

If ŵ ≡ 1, then we define the unweighted TV by

‖β‖TV =

p∑
j=2

|βj − βj−1|, for all β ∈ Rp.



Motivations for using TV

Appropriate for multiple change-points estimation.
−→ Partitioning a nonstationary signal into several contiguous
stationary segments of variable duration [Harchaoui and

Lévy-Leduc (2010)].

Widely used in sparse signal processing and imaging (2D)
[Chambolle et al. (2010)].

Enforces sparsity in the discrete gradient, which is desirable for
applications with features ordered in some meaningful way
[Tibshirani et al. (2005)].
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Counting process: stochastic setup

N = {N(t)}0≤t≤1 is a counting process.

Doob-Meyer decomposition:

N(t) = Λ0(t)︸ ︷︷ ︸
compensator

+ M(t),︸ ︷︷ ︸
martingale

0 ≤ t ≤ 1.

The intensity of N is defined by

λ0(t)dt = dΛ0(t) = P[N has a jump in [t, t + dt)|F(t)],

where F(t) = σ(N(s), s ≤ t).



Piecewise constant intensity

Assume that

λ0(t) =

L0∑
`=1

β0,`1(τ0,`−1,τ0,`](t), 0 ≤ t ≤ 1.

{τ0,0 = 0 < τ0,1 < · · · < τ0,L0−1 < τ0,L0 = 1}: set of true
change-points.

{β0,` : 1 ≤ ` ≤ L0}: set of jump sizes of λ0.

L0 : number of true change-points.



Assumption on observations

Data

We observe n i.i.d copies of N on [0, 1], denoted N1, . . . ,Nn.

We define N̄n(I ) = 1
n

∑n
i=1 Ni (I ), Ni (I ) =

∫
I dNi (t), for any

interval I ⊂ [0, 1].

This assumption is equivalent to observing a single process N
with intensity nλ0 (only used to have a notion of growing
observations with an increasing n).



A procedure based on total-variation penalization

We introduce the least-squares functional

Rn(λ) =

∫ 1

0
λ(t)2dt − 2

n

n∑
i=1

∫ 1

0
λ(t)dNi (t),

[Reynaud-Bouret (2003, 2006), Gäıffas and Guilloux (2012)].

Fix m = mn ≥ 1, an integer that shall go to infinity as n→∞.

We approximate λ0 in the set of nonnegative piecewise constant
functions on [0, 1] given by

Λm =
{
λβ =

m∑
j=1

βj ,mλj ,m : β = [βj ,m]1≤j≤m ∈ Rm
+

}
,

where

λj ,m =
√
m1Ij,m et Ij ,m =

( j − 1

m
,
j

m

]
.



A procedure based on total-variation penalization

The estimator of λ0 is defined by

λ̂ = λβ̂ =
m∑
j=1

β̂j ,mλj ,m.

where β̂ is giving by

β̂ = argmin
β∈Rm

+

{
Rn(λβ) + ‖β‖TV,ŵ

}
.

We consider the dominant term

ŵj ≈
√

m logm

n
N̄n

(( j − 1

m
, 1
])
.



Oracle inequality with fast rate

The linear space Λm is endowed by the norm

‖λ‖ =

√∫ 1

0
λ2(t)dt.

Let Ŝ to be the support of the discrete gradient of β̂,

Ŝ =
{
j : β̂j ,m 6= β̂j−1,m for j = 2, . . . ,m

}
.

Let L̂ to be the estimated number of change-points defined by:

L̂ = |Ŝ |.



Oracle inequality with fast rate

The estimator λ̂ satisfies the following:

Theorem 1

Fix x > 0 and let the data-driven weights ŵ defined as above. Assume
that L̂ satisfies L̂ ≤ Lmax. Then, we have

‖λ̂− λ0‖2 ≤ inf
β∈Rm

+

∥∥λβ − λ0

∥∥2
+ 6(Lmax + 2(L0 − 1)) max

1≤j≤m
ŵ2
j

+ C1

‖λ0‖∞
(
x + Lmax(1 + logm)

)
n

+ C2

m
(
x + Lmax(1 + logm)

)2

n2
,

with a probability larger than 1− Lmaxe
−x .



Oracle inequality with fast rate

Let ∆β,max = max1≤`,`′≤L0 |β0,` − β0,`′ |, be the maximum of
jump size of λ0.

Corollary

We have

‖λβ − λ0‖2 ≤
2(L0 − 1)∆2

β,max

m
.

Our procedure has a fast rate of convergence of order

(Lmax ∨ L0)m logm

n
.

An optimal tradeoff between approximation and complexity is
given by the choice:

If Lmax = O(m)⇒ m ≈ n1/3.

If Lmax = O(1)⇒ m ≈ n1/2.



Consistency of change-points detection

There is an unavoidable non-parametric bias of approximation.

The approximate change-points sequence ( j`
m )0≤`≤L0 is defined as the

right-hand side boundary of the unique interval Ij`,m that contains the
true change-point τ0,`.

τ0,` ∈
(

j`−1
m , j`m

]
, for ` = 1, . . . , L0 − 1, where j0 = 0 and jL0 = m by

convention.

t

τ0,`−1 τ0,` τ0,`+1

Ij`−1,m Ij`,m Ij`+1,m

τ̂`

Let Ŝ = {ĵ1, . . . , ĵL̂} with ĵ1 < · · · < ĵL̂, and ĵ0 = 0 and ĵL̂+1 = m.

We define simply

τ̂` =
ĵ`
m

for ` = 0, . . . , L̂ + 1.



Consistency of change-points detection

We can’t recover the exact position of two change-points if they
lie on the same interval Ij ,m.

Minimal distance between true change-points

Assume that there is a positive constant c ≥ 8 such that

min
1≤`≤L0

|τ0,` − τ0,`−1| >
c

m
.

−→ The change-points of λ0 are sufficiently far apart.
−→ There cannot be more than one change-point in the
“high-resolution” intervals Ij ,m.

The procedure will be able to recover the (unique) intervals
Ij`,m, for ` = 0, . . . , L0, where the change-point belongs.



Consistency of change-points detection

∆j ,min = min
1≤`≤L0−1

|j`+1 − j`|, the minimum distance between

two consecutive terms in the change-points of λ0.

∆β,min = min
1≤q≤m−1

|β0,q+1,m − β0,q,m|, the smallest jump size of

the projection λ0,m of λ0 onto Λm.

(εn)n≥1, a non-increasing and positive sequence that goes to
zero as n→∞.

Technical Assumptions

We assume that ∆j,min, ∆β,min and (εn)n≥1 satisfy

√
nmεn∆β,min√

logm
→∞ and

√
n∆j,min∆β,min√

m logm
→∞, as n→∞.



Consistency of change-points detection

Theorem 2

Under the given Assumptions, and if L̂ = L0 − 1, then the change-points
estimators {τ̂1, . . . , τ̂L̂} satisfy

P
[

max
1≤`≤L0−1

|τ̂` − τ0,`| ≤ εn
]
→ 1, as n→∞.

If m ≈ n1/3, Theorem 2 holds with εn ≈ n−1/3,∆β,min = n−1/6

et ∆j ,min ≥ 6.

m ≈ n1/2, Theorem 2 holds with εn ≈ n−1/2,∆β,min = n−1/6 et
∆j ,min ≥ 6.



Proximal operator + algorithm

We are interested in computing a solution

x? = argmin
x∈Rp

{g(x) + h(x)},

where g is smooth and h is simple (prox-calculable).

The proximal operator proxh of a proper, lower semi-continuous,
convex function h : Rm → (−∞,∞], is defined as

proxh(v) = argmin
x∈Rm

{1

2
‖v − x‖2

2 + h(x)
}
, for all v ∈ Rm.

Proximal gradient descent (PGD) algorithm is based on

x (k+1) = proxεkh
(
x (k) − εk∇g(x (k))

)
.

[Daubechies et al. (2004) (ISTA) , Beck and Teboulle (2009) (FISTA)]



Proximal operator of the weighted TV penalization

We have

β̂ = argmin
β∈Rm

+

{1

2
‖N− β‖2

2 + ‖β‖TV,ŵ

}
,

where N = [Nj ]1≤j≤m ∈ Rm
+ is given by

N =
(√

mN̄n(I1,m), . . . ,
√
mN̄n(Im,m

)
.

Then
β̂ = prox‖·‖TV,ŵ

(N).

Modification of Condat’s algorithm [Condat (2013)].

If we have a feasible dual variable û, we can compute the primal
solution β̂, by Fenchel duality.

The Karush-Kuhn-Tucker (KKT) optimality conditions
characterize the unique solutions β̂ and û.



Algorithm 1: β̂ = prox‖·‖TV,ŵ
(N)

1. set k = k0 = k− = k+ ← 1; βmin ← N1 − ŵ2; βmax ← N1 + ŵ2; θmin ← ŵ2; θmax ← −ŵ2;

2. if k = m then

β̂m ← βmin + θmin;

3. if Nk+1 + θmin < βmin − ŵk+2 then /* negative jump */

β̂k0
= · · · = β̂k− ← βmin; k = k0 = k− = k+ ← k− + 1;

βmin ← Nk − ŵk+1 + ŵk ; βmax ← Nk + ŵk+1 + ŵk ; θmin ← ŵk+1; θmax ← −ŵk+1;

4. else if Nk+1 + θmax > βmax + ŵk+2 then /* positive jump */

β̂k0
= . . . = β̂k+

← βmax; k = k0 = k− = k+ ← k+ + 1;

βmin ← Nk − ŵk+1 − ŵk ; βmax ← Nk + ŵk+1 − ŵk ; θmin ← ŵk+1; θmax ← −ŵk+1;

5. else /* no jump */
set k ← k + 1; θmin ← Nk + ŵk+1 − βmin; θmax ← Nk − ŵk+1 − βmax;
if θmin ≥ ŵk+1 then

βmin ← βmin +
θmin−ŵk+1

k−k0+1
; θmin ← ŵk+1; k− ← k;

if θmax ≤ −ŵk+1 then

βmax ← βmax +
θmax+ŵk+1

k−k0+1
; θmax ← −ŵk+1; k+ ← k;

6. if k < m then
go to 3.;

7. if θmin < 0 then

β̂k0
= · · · = β̂k− ← βmin; k = k0 = k− ← k− + 1; βmin ← Nk − ŵk+1 + ŵk ;

θmin ← ŵk+1; θmax ← Nk + ŵk − vmax; go to 2.;

8. else if θmax > 0 then

β̂k0
= · · · = β̂k+

← βmax; k = k0 = k+ ← k+ + 1; βmax ← Nk + ŵk+1 − ŵk ;

θmax ← −ŵk+1; θmin ← Nk − ŵk − θmin; go to 2.;

9. else

β̂k0
= · · · = β̂m ← βmin +

θmin
k−k0+1

;



Simulated data: example with 5, 15 and 30 change-points
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Simulated data

To evaluate the performance of the TV procedure λ̂, we use a
Monte-Carlo averaged mean integrated squared error MISE.

MISE(λ̂, λ0) = E

∫ 1

0
(λ̂(t)− λ0(t))2dt.

We run 100 Monte-Carlo experiments, for an increasing
sample size between n = 500 and n = 30000, for each 3 examples.
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Real data

RNA-seq can be modelled mathematically as replications of an
inhomogeneous counting process with a piecewise constant
intensity [Shen and Zhang (2012)].
We applied our method to the sequencing data of the breast
tumor cell line HCC1954 7.72 million reads) and its reference
cell line BL1954 (6.65 million reads) [Chiang et al. (2009)].

A zoom into the sequence of reads for normal (left) and tumor
(right) data.



Real data

Zoom into the weighted (left) and unweighted (right) TV estimators
applied to the normal data.



Real data

Zoom into the weighted (left) and unweighted (right) TV
estimators applied to the tumor data.
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Features binarization

We have a raw design matrix X = [X i ,j ]1≤i≤n;1≤j≤p with n
examples and p raw features.

We denote by X •,j the j-th feature column and by X i ,• the i-th
data row of X .

The binarized matrix XB is a matrix with an extended number
d > p of columns (only binary).

The j-th column X •,j is replaced by a number dj of columns
XB
•,j ,1, . . . ,X

B
•,j ,dj containing only zeros and ones.



Features binarization

If X•,j takes values (modalities) in the set {1, . . . ,Mj} with
cardinality Mj , we take dj = Mj , and use a binary coding of
each modality by defining

XB
i ,j ,k =

{
1, if X i ,j = k ,

0, otherwise,

If X•,j is quantitative, then dj we consider a partition of intervals
Ij ,1, . . . , Ij ,dj for the range of values of X •,j and define

XB
i ,j ,k =

{
1, if X i ,j ∈ Ij ,k ,

0, otherwise,

A natural choice of intervals is given by the quantiles, namely we
can typically choose Ij ,k =

(
qj(

k−1
dj

), qj(
k
dj

)
]

for k = 1, . . . , dj .



Features binarization

To each binarized feature XB
•,j ,k corresponds a parameter θj ,k .

The parameters associated to the binarization of the j-th feature
is denoted θj ,• = (θj ,1 · · · θj ,dj )>.

The full parameters vector of size d =
∑p

j=1 dj , is simply

θ = (θ>1,• · · · θ>p,•)> =
(
θ1,1 · · · θ1,d1 θ2,1 · · · θ2,d2 · · · θp,1 · · · θp,dp

)>
.

θ1,• θ2,• θ3,• θ4,•

Illustration of θ = (θ>1,• · · · θ
>
p,•)> with: p = 4, d1 = 9, d2 = 8, d3 = 6, d4 = 8.



Features binarization

The binarized matrix XB is not full rank, since in each block the
sum of the columns XB

•,j ,1, . . . ,X
B
i ,j ,dj

is equal to 1n (intercept).

To avoid this over-parametrization, we must add a constraint.

We can either drop a parameter or add a linear constraint in
each bloc θj ,•.

One sets θj ,k = 0, for one value k in {1, . . . , dj}. This is called a
kth-baseline-constraint.

Another useful possibility is to impose
∑dj

k=1 θj ,k = 0, called
sum-to-zero-constraint (the one we prefer).



Binarsity

We therefore introduce the following new penalization called
binarsity

bina(θ) =

p∑
j=1

(
‖θj ,•‖TV + δHj

(θj ,•)
)
,

where Hj = {βj ,• ∈ Rdj :
∑dj

k=1 βj ,k = 0}, and the indicator
function

δHj
(βj ,•) =

{
0, if βj ,• ∈ Hj ,

∞, otherwise.

If a raw feature j is statistically not relevant for predicting the
labels, then the full block θj ,• should be zero.

If a raw feature j is relevant, then the number of different values
for the coefficients of θj ,• should be kept as small as possible, in
order to balance bias and variance.



Weighted Binarsity

We consider the following data-driven weighted version of Binarsity
given by

binaŵ (θ) =

p∑
j=1

(
‖θj ,•‖TV,ŵj,• + δHj

(θj ,•)
)

ŵj ,k ≈ C

√
log p

n
n̂j ,k ,

where

n̂j ,k =
#
({

i = 1, . . . , n : X i ,j ∈
(
qj
(
k
dj

)
, qj(1)

]})
n

.



Generalized linear models

Let a couple of input-output variables (X ,Y ) where the
conditional distribution of Y given X = x is assumed to be from
one parameter exponential family

f (y;m0(x)) = exp
(
ym0(x)− b(m0(x))

)
.

The function b(·) is known, while the natural parameter
function m0(x) is unknown and specifies how the response
depends on the feature.

We have

E[Y |X ] = b′(m0(X )), and m0(X ) = g
(
E[Y |X ],

)
where the dot denotes differentiation and b′ = g−1 is the link
function transformation.

Logistic and probit regression for binary data or multinomial
regression for categorical data, Poisson regression for count
data, etc ...



Generalized linear models + binarsity

We consider the empirical risk

Rn(mθ) = Rn(θ) =
1

n

n∑
i=1

`
(
Y i ,mθ(X i ,•)

)
=

1

n

n∑
i=1

`
(
Y i , 〈XB

i ,•, θ〉
)
.

` is the generalized linear model loss function and is given by

`
(
Y i ,mθ(X i ,•)

)
= −Y i mθ(X i ,•) + b(mθ(X i ,•)).

Our estimator of m0 is given by m̂ = mθ̂, where θ̂ is the solution
of the penalized log-likelihood problem

θ̂ = argmin
θ∈Rd

{
Rn(θ) + binaŵ (θ)

}
.



Generalized linear models

To evaluate the quality of the estimation, we shall use the
excess risk of m̂,

R(m̂(X ))− R(m0(X )) = EL (Y |X )[Rn(m̂(X ))− Rn(m0(X ))].

Define the empirical Kullback-Leibler divergence between m0

and its estimator m̂ as follows

KLn(m0(X ), m̂(X )) =
1

n

n∑
i=1

KL
(
f (Y ;m0(X i ,•)), f (Y ; m̂(X i ,•))

)
.

One has

Lemma

R(m̂(X ))− R(m0(X )) = KLn(m0(X ), m̂(X )).



Oracle inequality

Theorem 3

Assume that Y i −m0(X i ,•) is a subgaussian random variable.
Then, with a probability larger than 1− p1−A, (A > 1) the
estimator m̂ verifies

KLn(m0(X ), m̂(X )) ≤ inf
θ∈Rd

(
KLn(m0(X ),mθ(X )) + 2 binaŵ (θ)

)
.

The variance term satifies

binaŵ (θ) ≈ bina(θ) max
j=1,...,p

max
k=1,...,dj

√
log p

n
.



Proximal algorithm of weighted binarsity

Since Binarsity is separable by blocks, we have(
proxbinaŵ (θ)

)
j ,• = prox(‖·‖TV,ŵj,•+δHj

)(θj ,•),

for all j = 1, . . . , p.

Algorithm 2 expresses proxbinaŵ based on the proximal operator
of the weighted TV penalization.

Algorithm 2: proxbinaŵ (θ)

1 for j = 1, . . . , p do
2 βj ,• ← prox‖·‖TV,ŵj,•

(θj ,•);

3 ηj ,• ← βj ,• − 1
dj

∑dj
k=1 βj ,k ;

4 return ηj ,•;

TV regularization and mean removal in each block.



Toy example (n = 1000, p = 2, n cuts =100)



Rela data: Parkinsons dataset (n = 130, p = 22)

[Source: https://archive.ics.uci.edu/ml/datasets/Parkinsons]

Algorithms AUC n cuts

log reg on std features, no pen 0.851 -

log reg std features, `2-pen 0.839 -

log reg std features, `1-pen 0.878 -

log reg on bina features, bina-pen 0.901 12
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Framework and models: marked counting process

For individual i , i = 1, . . . , n :

Ni (t) is a marked counting process over a fixed time interval
[0, τ ], with marker Yi (t).

Ni has intensity, namely

P[Ni has a jump in [t, t + dt)|Ft ] = Yi (t)λ?(t,Xi (t))dt,

where Ft = σ(Ni (s),Yi (s),Xi (s) : s ≤ t).

Xi (t) = (X 1
i (t), . . . ,X p

i (t)) are temps-dependents covariables.

High-dimensional setting: p is large.



Framework and models: dynamic Aalen and Cox models

We consider two dynamic models for the function λ?:

a time-varying Aalen model

λA
? (t,X (t)) = X (t)β?(t),

a time-varying Cox model

λM
? (t,X (t)) = exp

(
X (t)β?(t)

)
,

β? is an unknown p-dimensional function from [0, τ ] to Rp.

Aim to estimate the parameter β? on the basis of data from n
independent individuals:

Dn =
{

(Xi (t),Yi (t),Ni (t)) : t ∈ [0, τ ], i = 1, . . . , n
}
.



Learning dictionary: piecewise constant functions

We consider sieves (or histogram) based estimators of the
p-dimensional unknown function β? [Murphy and Sen (1991)].

We hence consider a L-partition of the time interval [0, τ ],
where L ∈ N∗

ϕl =

√
L

τ
1(Il) and Il =

( l − 1

L
τ,

l

L
τ
]
.

Let the set of univariate piecewise constant functions

HL =
{
α(·) =

L∑
l=1

αlϕl(·) : (αl)1≤l≤L ∈ RL
+

}
.



Learning dictionary: piecewise constant functions

We define the sets of candidates for estimation as

ΛA = {x , t ∈ [0, τ ] 7→ λA
β (t, x(t)) = x(t)β(t) | ∀j βj ∈ HL}.

for the Aalen model and

ΛM = {x , t ∈ [0, τ ] 7→ λM
β (t, x(t)) = exp

(
x(t)β(t)

)
| ∀j βj ∈ HL}.

for the Cox model.

We consider

β = (β>1,·, . . . , β
>
p,·)
> = (β1,1, . . . , β1,L, . . . , βp,1, . . . , βp,L)>,

∀j = 1 . . . , p, ∀l = 1, . . . , L. and ∀t ∈ Il , βj(t) =

√
L

τ
βj ,l .



Estimation procedure: weighted (`1 + `1)-TV penalization

Full likelihood functional: time-varying Cox model

`M
n (β) =− 1

n

n∑
i=1

{∫ τ

0

log
(
λM
β (t,Xi (t))

)
dNi (t)−

∫ τ

0

Yi (t)λM
β (t,Xi (t))dt

}
.

[Martinussen and Scheike (2007), Lemler (2013)].

Our specific covariate weighted (`1 + `1)-TV penalty is given by

‖β‖gTV,ŵ =

p∑
j=1

(
ŵj ,1|βj ,1|+

L∑
l=2

‖βj ,·‖TV,ŵj,· .
)
, for β ∈ RpL.

ŵj ,l ≈ Cτ

√
L log(pL)

n

∫ τ

(l−1)τ/L
(X j

i (t))2dN̄n(t).



Slow oracle inequality

In the Cox model, our estimator is then respectively defined as
λ̂M = λM

β̂M
, where

β̂M = argmin
β∈Rp×L

{
`M
n (β) + ‖β‖gTV,ŵ

}
.

Theorem 4

For x > 0 fixed, the estimator λ̂M verifies with a probability larger
than 1− CMe−x ,

Kn(λM
? , λ̂

M) ≤ inf
β∈RpL

(
Kn(λM

? , λ
M
β ) + 2||β||gTV,ŵ

)
.

The variance term satisfies

‖β‖gTV,ŵ ≈ ‖β‖gTV max
j=1,...,p

max
l=1,...,L

√
L log pL

n
.



Proximal operator of the weighted (`1 + `1)-TV penalization

θ = prox‖·‖gTV,ŵ
(β)

θ = argmin
x∈RpL

{
1

2
‖β − x‖2

2 +

p∑
j=1

(
ŵj ,1|xj ,1|+

L∑
l=2

‖xj ,·‖ŵj,·

)}
.

Algorithm 3: θ = prox‖·‖gTV,ŵ
(β)

for j = 1, . . . , p do
set µ← βj ,·; γ̂ ← ŵj ,·\{ŵj ,1};
η ← prox‖·‖TV,γ̂

(µ);

θj ,· ← η −
(
η1 − sgn (η1) max

(
0, |η1| − γ̂1

L

))
1L;

return θj ,·

TV regularization and thresholding in each bloc.

.



SPGD for time-varying models = SGD-timevar

Algorithm 4: SGD-timevar

1. Parameters: Integer K > 0;

2. Initialization: (β̂)(1) = 0 ∈ Rp×L, and r (1) ∈ [0, 1];
3. for k = 1, . . . ,K do

Choose randomly ik ∈ {1, . . . , n} and compute ∇ik
= ∇`ik ((β̂)(k));

Update moving averages

a(k) ← (1− (r (k))−1)a(k) + (r (k))−1∇ik
;

b
(k)
j ← (1− (r (k))−1)b

(k)
j + (r (k))−1‖∇j,·‖2;

c(k) ← (1− (r (k))−1)c(k) + (r (k))−1 diag(Hik
) where Hik

=
( ∂2

(
`ik

((β̂)(k))
)

∂2β

)
;

Estimate learning rate

ε
(k)
j ←

1

c+
j

∑L
l=1

(
a

(k)
j,l

)2

b
(k)
j

; where c+
j = max

1≤l≤L
cj,l

ηj ← ε
(k)
j ;

ε(k) ←
(
ε

(k)
1 1L, . . . , ε

(k)
p 1L

)>;
Update memory size

r (k) ←
(

1−
∑L

l=1

(
a

(k)
j,l

)2

b
(k)
j

)
� r (k) + 1;

(θ̂)(k) ← (β̂)(k) − ε(k) �∇ik
;

(β̂)(k+1) ←
(

proxη1‖·‖gTV,ŵ1,·

(
(θ̂)

(k)
1,·
)
, . . . , proxηp‖·‖gTV,ŵp,·

(
(θ̂)

(k)
p,·
))>

;

4. return (β̂)(K)

[Schaul et al. (2012)].



Simulated data in the time-varying Cox model

Right censoring: n = 1000, and T has hazard rate
λ?(t,X ) = β?0(t) exp(X (t)β?(t)).

p = 10 covariates processes Xi (t)i=1,...,n which are N (0, 0.5)
i .i .d piecewise constant over a 50-partition of the time interval
[0, 3].

The baseline β?0 is defined through a Weibull W(1.2, 0.15).

We draw the true regression functions β?1 , β
?
2 , and β?3 . We set

β?j ≡ 0, for j = 4, . . . , 10.
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Simulated data in the time-varying Cox model

We run 100 Monte-Carlo experiments of training data as
described above.

The estimation accuracy is investigated via a mean squared
error defined as

MISEj =
1

100

100∑
m=1

∫ τ

0

(
(β̂M

j (t))m − β?j (t)
)2
dt,

where (β̂M
j (t))m is the estimation of β?j (t) in the sample m, for

all j = 1, . . . , p.



Simulated data in the time-varying Cox model

0.0

0.5

1.0

1.5

2.0
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A
Boxplots of the MISEj of estimated regression coefficients over
L-partition (L ∈ {10, 30, 50, 70}) with SGD-timevar (left) and
timereg R-package (right) [Martinussen and Scheike (2007)].



PBC data: time-varying Cox model

Primary Biliary Cirrhosis (PBC) of the liver and was conducted
between 1974 and 1984 [Feleming (1991)].

A total of 418 patients are included in the dataset and were followed
until death or censoring.

We consider the covariates: age, edema, log(bilirubin), log(albumin)

and log(protime).

Estimated cumulative regression coefficients B̂M
j (t) =

∫ t

0
β̂j(s)ds on PBC

data with: SGD-timevar (blue) and timereg R-package (green).
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Conclusion + Perspectives

We introduce a data-driven weighted total-variation
penalizations for three problems: change-points detection,
generalized linear models with binarized features and learning
high-dimensional time-varying Aalen and Cox models.

For each procedure, we give: theoretical guaranties by proving
oracles inequalities for the prediction error and algorithms that
efficiently solve the studied convex problems.

With S. Bussy and A. Guilloux, we study the esti-
mation problem of high-dimensional Cox model, with
covariables having multiple cut-points, using binarsity
penalization.

Comparing numerically the prediction performance of
binarsity with others procedures (random forests).
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