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@ Motivations



Weighted and unweighted TV

@ For a chosen positive vector of weights W, we define the
(discrete) weighted total-variation (TV) by

p

I8l Tv,e = > W;lB; — Bj-al, for all B € RP.

j=2

e If w =1, then we define the unweighted TV by

p
I1Blrv =D 18 — Bj-1l, for all 8 € RP.

j=2



Motivations for using TV

@ Appropriate for multiple change-points estimation.
— Partitioning a nonstationary signal into several contiguous
stationary segments of variable duration [Harchaoui and
Lévy-Leduc (2010)].

e Widely used in sparse signal processing and imaging (2D)
[Chambolle et al. (2010)].

@ Enforces sparsity in the discrete gradient, which is desirable for
applications with features ordered in some meaningful way
[Tibshirani et al. (2005)].



@ Learning the intensity of time events with change-points
@ Piecewise constant intensity
@ Estimation procedure
@ Change-points detection + Numerical experiments



Counting process: stochastic setup

@ N = {N(t)}o<t<1 is a counting process.

M(t)
3

N(t)

@ Doob-Meyer decomposition:

N(t) = &(E + w 0<t<1.

compensator  martingale
@ The intensity of N is defined by
Ao(t)dt = dN\o(t) = P[N has a jump in [t, t + dt)|F(t)],

where F(t) = o(N(s),s < t).



Piecewise constant intensity

@ Assume that

Lo

t) = Z/aoﬂ(m (D), 0< <1
=1

@ {r00=0<701< - <T01,-1<ToL, =1} setof true
change-points.

o {fps:1 <0< Lg}: set of jump sizes of Ag.
@ Lo : number of true change-points.




Assumption on observations

Data
We observe n i.i.d copies of N on [0, 1], denoted Ny, ..., N,.

o We define N,(1) =137 Ni(1), Ni(1) = [, dN;(t), for any
interval / C [0, 1].

@ This assumption is equivalent to observing a single process N
with intensity n\g (only used to have a notion of growing
observations with an increasing n).



A procedure based on total-variation penalization

@ We introduce the least-squares functional

R,,()\):/O )\(t)2dt—iZ/O AE)dN (1),

[Reynaud-Bouret (2003, 2006), Gaiffas and Guilloux (2012)].
@ Fix m= m, > 1, an integer that shall go to infinity as n — oo.

@ We approximate \g in the set of nonnegative piecewise constant
functions on [0, 1] given by

Am = {)\ﬁ = Zﬂj,m)\j,m B = [Bjmli<j<m € RT},
=

where

1
)\Lm = \/E]l/jm et Ij,m = (Ji, L] .
’ m m



A procedure based on total-variation penalization

@ The estimator of )\ is defined by
A=25="BimNim:
j=1

where 3 is giving by

ﬁA = argmin {Rn()\g) + ||,3||TVW}
BERT

@ We consider the dominant term

o[PS R (2)




Oracle inequality with fast rate

@ The linear space A, is endowed by the norm

Al = /1 A2(t)dt.
0
o Let S to be the support of the discrete gradient of A,
S= {j: Bj,m #ijl,m forj:2,...,m}.
o Let [ to be the estimated number of change-points defined by:

L=|5



Oracle inequality with fast rate

The estimator \ satisfies the following:

Fix x > 0 and let the data-driven weights W defined as above. Assume
that [ satisfies L < Lnax. Then, we have

,\_ 2< X . 2 . A'2
I8 =0l < inf, (X = ol + 6(Lmax +2(Lo = 1)) max &

+ C

||/\0Hoo(x + Lmax(1 + log m))
1

n

m(x + Lmax(1 + log m))2
2

+ G

Y

with a probability larger than 1 — L,e™™



Oracle inequality with fast rate

o Let Agmax = maxi<s o<1, |Boe — Bow|, be the maximum of
jump size of .

Corollary
We have . A2
2 -1
IAs = Xol? < W.

@ Our procedure has a fast rate of convergence of order

(Lmax \ LO)m |og m

n

@ An optimal tradeoff between approximation and complexity is
given by the choice:

If Lnax = O(m) = m=~ nt/3.

If Linax = O(1) = m ~ n*/2.



Consistency of change-points detection

@ There is an unavoidable non-parametric bias of approximation.

@ The approximate change-points sequence (% )o<</, is defined as the
right-hand side boundary of the unique interval /;, ,, that contains the
true change-point 79 .

@ o4 € (”ﬁl,#‘}, for{=1,...,Lp—1, where jo =0 and j,, = m by
convention.

T0,0—1 To,¢ T0,4+1

IJ‘é‘fl-,m /jz-m lfé‘+17m

] Let§:{j1,...,jz} Withjl < vee <le_, andj():O andjzﬂ =m.
@ We define simply

N

=2 forv=0,... [ +1.
m



Consistency of change-points detection

@ We can't recover the exact position of two change-points if they
lie on the same interval /; .

Minimal distance between true change-points

Assume that there is a positive constant ¢ > 8 such that

1§n}i§nLo 70,6 — To,0—1] > %
— The change-points of Ay are sufficiently far apart.
— There cannot be more than one change-point in the
“high-resolution” intervals /; ,,.

@ The procedure will be able to recover the (unique) intervals
li;,m, for £ =0,..., Lo, where the change-point belongs.



Consistency of change-points detection

® Ajmin=__min |jr1 — j¢|, the minimum distance between
1<0<lo—1
two consecutive terms in the change-points of Ag.
® Agmin=_ _min |80g+1,m — P0,q,m|, the smallest jump size of
' 1<g<m-1 ' : o

the projection Ao, of Ag onto Ap,.

@ (£n)n>1, @ non-increasing and positive sequence that goes to
zero as n — oo.

Technical Assumptions

We assume that Aj min, Ag,min and (€,)n>1 satisfy

VAmEnBgmin g VA mind g min
Vlog m vmlogm

— 00, as n — oo.



Consistency of change-points detection

Theorem 2

Under the given Assumptions, and if [ =1y—1, then the change-points
estimators {7y,...,7;} satisfy

]P[ max |7 — 10| < 5,,} — 1, as n— co.

1<0<lo—1

o If m= n1/3, Theorem 2 holds with ¢, ~ n_1/3,A/57min = n1/6
et Aj min > 6.

o m =~ n'/2 Theorem 2 holds with ¢, ~ n™%/2 Ag i, = n71/6 et
Aj,min > 6.



Proximal operator + algorithm

@ We are interested in computing a solution

x* = argmin{g(x) + h(x)},
x€ERP

where g is smooth and h is simple (prox-calculable).

@ The proximal operator prox; of a proper, lower semi-continuous,
convex function h: R™ — (—o0, 00|, is defined as

1
prox,(v) = argmin {f||v —x|I5 + h(X)}, for all v € R™.
xERM 2

@ Proximal gradient descent (PGD) algorithm is based on
xkH1) = Prox., p (X(k) — Eng(x(k))).

[Daubechies et al. (2004) (ISTA) , Beck and Teboulle (2009) (FISTA)]



Proximal operator of the weighted TV penalization

e We have
. (1 )
B = argmin { S [IN = 813 + |8l v.s |
BERT
where N = [Nj]1<j<m € RT is given by

N = (ﬁﬂ/n(/lvm), L \/ENH(/m,m)

@ Then
B = Prox|. iy, (N).
e Modification of Condat’s algorithm [Condat (2013)].

o If we have a feasible dual variable i1, we can compute the primal
solution (3, by Fenchel duality.

@ The Karush-Kuhn-Tucker (KKT) optimality conditions
characterize the unique solutions 3 and .



Ll

Algorithm 1: BA = ProX||.|Iy ,(N)

set k = kg = k— = ky < 1; Bin = N1 — W2; Bmax < N1 + W2; Opin < W2; Omax < —Wo;
if k = m then
L Bm < Bmin + Omin

if Niy 1 + Omin < Bmin — W42 then /* negative jump */
Bko = =Bk Bminik=k = k_ = ky + k_ +1;
Brmin = Nie = Wiey1 + Wics Bmax = Nie + Wiy 1 + Wi Omin <= Wiy 15 Omax = — W1

else if Ny, 1 + Omax > Bmax + Wip then /* positive jump */
Brg =+ =B, + Bmaxi k= ko =k = ks « ke +1;

Bmin <= Nk — Wiep1 — Wi; Bmax <= Ng 4 W1 — Wies Omin <= Wi 17 Omax < — Wi 1

else /* no jump */
set k «— k 4+ 1; Omin <= Ng + Wei1 — Bmini Omax <= Nk — W1 — Bmaxi
if Opin > Wip1 then
Omin — Wit 1 N
Bmin < Bmin + T‘TOHJF? Omin < Wiy1s k— < ki
if Omax < — W1 then

Omax+W, ~
Bmax < Bmax + 7,(7,(041?1 P Omax — —Wii1i ki <+ K

if kK < m then
[ goto3.;
if Omin < 0 then
Big =+ = Bi_ <« Bumini k= ko = k<= k_ +1; Bmin < Njo — Wiy + Wi
Omin = Wk+1; Omax <= Nk + Wi — Vmax; g0 to 2,;

else if Omax > 0 then
By =+ = Biy < Bmaxi k = ko = ky <= ki +1; Bmax = N + W1 — Wi
Omax < —Wjr1; Omin < Ni — Wy — Onin; go to 2,;
else
A . 0 .
ﬂko ="'=ﬂm<—5min+$&"ﬂ;




Simulated data: example with 5, 15 and 30 change-points

3000 J
0
2500 | —T |
2500
2000 0
1500 0
1000 100
500 5
8.0 0.2 0.4 0.6 0.8 1.0 0 02 04 [ 08 10
3000 =%
moog
2500 sl
2000 0
1500 — Jull
1000 100
500 5
8.0 0.2 0.4 0.6 0.8 1.0 0 02 04 [ 08 10
35000 ’
30000 maoog
25000 25000
20000 200
15000 1500
10000 1000
5000 000




Simulated data

@ To evaluate the performance of the TV procedure 5\, we use a
Monte-Carlo averaged mean integrated squared error MISE.

1
MISE(}, \o) = ]E/ (A(t) — Ao(t))3dt.
0

@ We run 100 Monte-Carlo experiments, for an increasing
sample size between n = 500 and n = 30000, for each 3 examples.

N\ N N

T jiw0 S

5000 10000 15000 20000 25000 30000 5000 10600 15000 20000 5000 10000 15000 20000 25000 30000

5000 10000 20000 25000 30¢



@ RNA-seq can be modelled mathematically as replications of an
inhomogeneous counting process with a piecewise constant
intensity [Shen and Zhang (2012)].

@ We applied our method to the sequencing data of the breast
tumor cell line HCC1954 7.72 million reads) and its reference
cell line BL1954 (6.65 million reads) [Chiang et al. (2009)].

Binnned counts of reads on the normal data




Zoom into the weighted (left) and unweighted (right) TV estimators

applied to the normal data.
=] 5



‘ A ‘: "o . ' LT . } ) vt
Zoom into the weighted (left) and unweighted (right) TV
estimators applied to the tumor data.



© Binarsity
o Features binarization
@ Binarsity penalization
@ Generalized linear models + binarsity



Features binarization

e We have a raw design matrix X = [X; jli<i<ni<j<p With n
examples and p raw features.

@ We denote by X, ; the j-th feature column and by X, the i-th
data row of X.

@ The binarized matrix X is a matrix with an extended number
d > p of columns (only binary).

@ The j-th column X, ; is replaced by a number d; of columns
XEM, ey Xﬁj’dj containing only zeros and ones.



Features binarization

o If X, takes values (modalities) in the set {1,..., M;} with
cardinality M;, we take d; = M;, and use a binary coding of
each modality by defining

B _ 1, if Xij=k,
ok 0, otherwise,

e If X, is quantitative, then d; we consider a partition of intervals
li1,. .., ljq for the range of values of X, ; and define

B _ 1, it Xij€ljg,
ik 0, otherwise,

@ A natural choice of intervals is given by the quantiles, namely we
can typically choose [ x = (q;(55% 7 L), qi( & )] fork=1,...,d,.



Features binarization

@ To each binarized feature X?j « corresponds a parameter 0; .

@ The parameters associated to the binarization of the j-th feature
is denoted (9J'7. = (91'71 ej’dj)—r.

@ The full parameters vector of size d = Zj'):l d;, is simply

T
9:(9{,. ...9;.)T:(91,1 01,021 - Orq, ~--9p,1~--9p,d,,) )

111111
1

91,-
lllustration of § = (6] 4 - - - 9;.)T with: p=4,dy =9, dp =8, d3 =6, dj = 8.

92,-

D —
- |



Features binarization

@ The binarized matrix X is not full rank, since in each block the

?,j,l? .. .,ij’dj is equal to 1, (intercept).

@ To avoid this over-parametrization, we must add a constraint.

sum of the columns X

@ We can either drop a parameter or add a linear constraint in
each bloc 6; ,.
@ One sets ¢, = 0, for one value k in {1,...,d;}. Thisis called a
kth_baseline-constraint.
e . d;
@ Another useful possibility is to impose ) " ; 6; x = 0, called
sum-to-zero-constraint (the one we prefer).



@ We therefore introduce the following new penalization called
binarsity

bina(#) = Z (HG',.HTV + 6Hj(9j>.))7

J=1

where H; = {8+ € R% : szzl Bj k = 0}, and the indicator
function

0, if Bj.e € Hj,

oo, otherwise.

o7, (Bje) = {

o If a raw feature j is statistically not relevant for predicting the
labels, then the full block 6; . should be zero.

o If a raw feature j is relevant, then the number of different values
for the coefficients of 0; 4 should be kept as small as possible, in
order to balance bias and variance.



Weighted Binarsity

We consider the following data-driven weighted version of Binarsity

given by

where

p

binaa(6) = 3 (16)ell1v.i,. + 03,(610))
=1
I
ﬁ/j,k ~ C Eﬁj’ 5




Generalized linear models

@ Let a couple of input-output variables (X, Y) where the
conditional distribution of Y given X = x is assumed to be from
one parameter exponential family

f(y; mo(x)) = exp (ymo(x) — b(mo(x))).

@ The function b(-) is known, while the natural parameter
function mo(x) is unknown and specifies how the response
depends on the feature.

e We have

E[Y|X] = b'(mo(X)), and mo(X) = g(E[Y|X],)

where the dot denotes differentiation and b’ = g1 is the link
function transformation.

@ Logistic and probit regression for binary data or multinomial
regression for categorical data, Poisson regression for count
data, etc ...



Generalized linear models + binarsity

@ We consider the empirical risk

Rn(mg) = Rn(0) = 1Zz(v,,mg == U(Yi (XF,,0)).
i=1

[ay

n < n
i=1

@ [ is the generalized linear model loss function and is given by

((Yi,mo(Xie)) = —Yimg(Xie)+ b(mg(Xia)).

@ Our estimator of mg is given by m = mj, where 6 is the solution
of the penalized log-likelihood problem

0 = argmin {Rn(6) + binay (6)}.
OeRd



Generalized linear models

@ To evaluate the quality of the estimation, we shall use the
excess risk of m,

R(m(X)) — R(mo(X)) = E 2(v|x)[Ra(M(X)) = Ra(mo(X))].

@ Define the empirical Kullback-Leibler divergence between myg
and its estimator m as follows

KLn(mo(X), m(X ZKL (Y; mo(Xie)), F(Y; (X))

@ One has

R(m(X)) — R(mo(X)) = KLy(mo(X), m(X)).



Oracle inequality

Theorem 3

Assume that Y; — mg(X;,) is a subgaussian random variable.
Then, with a probability larger than 1 — p=4 (A > 1) the
estimator m verifies

KLy(mo(X). (X)) < inf, (KL,,(mO(X), my(X)) + 2 bina,;,,(H)).

The variance term satifies

_ _ log p
binag (0) ~ b 0 :
inay (0) ~ bina( )j:”ff?ip PR AP Vi




Proximal algorithm of weighted binarsity

@ Since Binarsity is separable by blocks, we have
(PrOXeinag, (0)) ;4 = PrOX( 1y i, s, ) (O):
? J

forall j=1,...,p.

Algorithm 2 expresses proxy;,,. based on the proximal operator
of the weighted TV penalization.

Algorithm 2: prox,;,, ()

—

forj=1,...,pdo

2 | Bje = Prox gy, (Ge);
1\ :
3| Mje < Bie = g k1 Biks
4 return 7 ;
@ TV regularization and mean removal in each block.



Raw features

Raw features

Raw features

Binarized features

Binarized features

Binarsity

=

Binarsity

Binarsity




Rela data: Parkinsons dataset (n = 130, p = 22)

[Source: https://archive.ics.uci.edu/ml/datasets/Parkinsons]

Algorithms AUC | n_cuts
log reg on std features, no pen 0.851 -
log reg std features, ¢>-pen 0.839 -
log reg std features, £1-pen 0.878 -
log reg on bina features, bina-pen | 0.901 12



@ High-dimensional time-varying Aalen and Cox models
o Weighted (¢1 + ¢1)-TV penalization
@ Theoretical guaranties
@ Algorithm 4+ Numerical experiments



Framework and models: marked counting process

For individual i,i=1,...,n:

e N;(t) is a marked counting process over a fixed time interval
[0, 7], with marker Yj(t).

@ N; has intensity, namely
P[N; has a jump in [t, t 4 dt)|F:] = Yi(t)\(t, Xi(t))dt,

where Fy = o(N;(s), Yi(s), Xi(s) : s < t).
o Xi(t) = (X}(t),...,XP(t)) are temps-dependents covariables.

e High-dimensional setting: p is large.



Framework and models: dynamic Aalen and Cox models

@ We consider two dynamic models for the function \,:
e a time-varying Aalen model

Nt X(t)) = X(1)5(t),
e a time-varying Cox model
Nt X(t) = exp (X(1)57(1)),

@ [3* is an unknown p-dimensional function from [0, 7] to RP.

@ Aim to estimate the parameter 5* on the basis of data from n
independent individuals:

Dn = {(Xi(t), Yi(t), Ni(t)) : t € [0,7],i =1,...,n}.



Learning dictionary: piecewise constant functions

@ We consider sieves (or histogram) based estimators of the
p-dimensional unknown function 5* [Murphy and Sen (1991)].

@ We hence consider a L-partition of the time interval [0, 7],
where L € N*

L -1 1
Y| = \/:]l(//) and // = (TT, ZT}

@ Let the set of univariate piecewise constant functions

HLZ{ Zaltp/ ()<< € RE }



Learning dictionary: piecewise constant functions

@ We define the sets of candidates for estimation as

= {x,t € [0,7] = Xj(t,x(t)) = x(£)3(t) | V) B; € H.}.

for the Aalen model and

M= {x,t €[0,7] = A'(t,x(t)) = exp (x(£)B(t)) | Vj Bj € H.}.

for the Cox model.

@ We consider

5 - (6;:7 .. 76;)|:~)T - (51,17 cee 761,L7 o 7Bp,17 cee 7Bp,L)T7

Vi=1...,p,¥I=1,...,L and Vt € I}, B;(t) \fﬁj



Estimation procedure: weighted (¢1 + ¢1)-TV penalization

@ Full likelihood functional: time-varying Cox model

wE = >, { /OT log (A (t, Xi(t))) dNi(t) — /OT Y,-(r)Ag”(t,X,-(t))dt}.

n <
i=1

[Martinussen and Scheike (2007), Lemler (2013)].
@ Our specific covariate weighted (¢1 + ¢1)-TV penalty is given by

J=1

P L
1Bllgrva = (%al8al + 18, llrv., ), for B € R
=2




Slow oracle inequality

@ In the Cox model, our estimator is then respectively defined as

M = )‘%/IM’ where

N

AM = argmin {E,,M(B) + HﬁHgTV,W}'

BeRPXL

Theorem 4

For x > 0 fixed, the estimator AM verifies with a probability larger
than 1 — Cuye™*,

KoM A1) < inf (KaO M) 42118l lgrv. )

@ The variance term satisfies

Llog pL
1Bllgrv.i = ||Bllgry max - max P



Proximal operator of the weighted (¢1 + ¢1)-TV penalization

© 0= prox|j . ()

p
H—argmm{HB—XllerZ(vaXJlHZM, o)}

xERPL

Algorithm 3: 0 = prox | ., L(B)

forj=1,... , pdo
set (1« B 5+ w; \{W;1};
0 4= PrOX| . (1)
0. n— (771 —sgn (1) max (0, [n1| — 7)>1L'
return 0; .

@ TV regularization and thresholding in each bloc.



SPGD for time-varying models = SGD-timevar

Algorithm 4: SGD-timevar

1. Parameters: Integer K > 0;
2. Initialization: ([‘})(1) =0eRP*L and rD ¢ [0, 1];

3. fork=1,...,K do
Choose randomly iy € {1,...,n} and compute vfk = V@,-k((é)(k));
Update moving averages
a9 (1 = () "halh) 4 (M)t
o) (1= ()T (W) T
82 (¢, ((AK))
B (1— (r(k))fl)c(k) + (r(k))71 diag(H,-k) where H; = (‘(627/3)
Estimate learning rate
L (k)y2
k) — LM where ¢ = max ¢
¥ G FONEN i T adi< !
J
nj sj(.k);
k) (s(lk)lL, . ,s;,k)lL)T;
Update memory size
L (k)y2
) (1 - Z/:lb(#) oM 41
J
OF (B —eW o v, ;
ok (k) NONE
i (B kD (Proxnl I lgTv,m, . ) Pl ((9);:,-)) ;

4. return (ﬁ)(K)

[Schaul et al. (2012)].




Simulated data in the time-varying Cox model

@ Right censoring: n = 1000, and T has hazard rate
Ae(t, X) = B5(t) exp(X(t)5*(1)).

e p = 10 covariates processes Xj(t)i=1,..n which are A/(0,0.5)
i.i.d piecewise constant over a 50-partition of the time interval
[0, 3].

@ The baseline f3; is defined through a Weibull W/(1.2,0.15).

@ We draw the true regression functions /37, 35, and 33. We set

J-*EO, for j=4,...,10.

0.9
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Simulated data in the time-varying Cox model

@ We run 100 Monte-Carlo experiments of training data as
described above.

@ The estimation accuracy is investigated via a mean squared
error defined as

100

MISE; = 1002/ HOR

I\

where (B ( ))m is the estimation of 3(t) in the sample m, for
all j=1,.



Simulated data in the time-varying Cox model

L_partition
L=10
=30
L=50

factor(group)

£5 corscD
=]

Coefs Coefs Coef? Coefd Caefo Coefto
factor(variable)

Boxplots of the MISE; of estimated regression coefficients over
L-partition (L € {10,30,50,70}) with SGD-timevar (left) and
timereg R-package (right) [Martinussen and Scheike (2007)].



PBC data: time-varying Cox model

@ Primary Biliary Cirrhosis (PBC) of the liver and was conducted
between 1974 and 1984 [Feleming (1991)].

@ A total of 418 patients are included in the dataset and were followed
until death or censoring.

@ We consider the covariates: age, edema, log(bilirubin), log(albumin)
and log(protime).

J o 1| ©1 © © ]
5 | 0 4 \ [
»_34 e ﬂ/ . ,/\ 7 // 0 ] T
8 g8l / g%/ B« /T g
° 0ol / S wl/ 0 0 0 @1
1/ © = 04 / Z o =
Y E | 5 E E T E o
3o 33/ 3 - 3ad / 3 3
| EN) | 0 / o, 0 ¢4
1/ ™7 =1 T o A
2 8’ O - o o
[=] TTTTTTT [=] TTTTTTT TTTTTIT1 TTTTTTT TTTTTTT T TTT
0 3 6 0 3 6 0 3 6 D 3 6 0 3 6 0 3 6
Baseline age edema logBilirubin logAlbumin logProtime

Estimated cumulative regression coefficients BJ-M(t) = fot Bi(s)ds on PBC
data with: SGD-timevar (blue) and timereg R-package (green).



© Conclusion + Perspectives



Conclusion + Perspectives

@ We introduce a data-driven weighted total-variation
penalizations for three problems: change-points detection,
generalized linear models with binarized features and learning
high-dimensional time-varying Aalen and Cox models.

@ For each procedure, we give: theoretical guaranties by proving
oracles inequalities for the prediction error and algorithms that
efficiently solve the studied convex problems.

With S. Bussy and A. Guilloux, we study the esti-

mation problem of high-dimensional Cox model, with
& covariables having multiple cut-points, using binarsity
—— penalization.

Comparing numerically the prediction performance of
A binarsity with others procedures (random forests).
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