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Abstract

We consider the problem of estimating the intensity of a counting
process in high-dimensional time-varying Aalen and Cox models. We
introduce a covariate-specific weighted total-variation penalization,
using data-driven weights that correctly scale the penalization along
the observation interval. We provide theoretical guaranties for the
convergence of our estimators and present a proximal algorithm to
solve the convex studied problems. The practical use and effectiveness
of the proposed method are demonstrated by simulation studies and
real data example.
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Introduction

Longitudinal events data arise in medicine, insurance, economics, game an-
alytics, etc. For example, electronically health records (EHR) databases
and patient registries collect, for large numbers of patients and for several
decades now, numerous longitudinal clinical markers, together with times
to (adverse) events, see e.g. Häyrinen, Saranto, and Nykänen 2008; Baker
et al. 2004; Coloma et al. 2011. For these longitudinal data, dynamical
regression models, such as Cox Cai and Sun 2003; Tian, D. Zucker, and
Wei 2005 or Aalen Torben Martinussen and Thomas H Scheike 1999 models
with time-varying coefficients, are flexible and popular models for assessing
the (time-varying) influence of each covariates on the risk, see examples of
applications in Kalantar-Zadeh et al. 2006; Bellera et al. 2010.

When a large number of covariates are recorded for each individuals or pa-
tients, such dynamical models face three major difficulties that have to be
addressed by statistical algorithms: the number of covariates, the complex-
ity of the model, a function has to be estimated for each covariates, and the
size of the data, when the number of individuals and/or covariates and the
number of records per individual grow.

In the existing literature, the first two difficulties have been addressed via
model selection. The most recent contributions for the Cox model with
time-varying coefficients include Yan and Jian Huang 2012; T. Honda and
Härdle 2014; T. Honda and Yabe 2017. They both propose to perform
model selection via sparsity inducing penalties (LASSO and SCAD) with
spline proposals. We also refer the reader to Cheng et al. 2014 for similar
methods in the classical longitudinal data model, where a response process
is observed.

To the best of our knowledge, the third difficulty, due to the size of the
data (in both direction) has only been addressed in Perperoglou, Cessie,
and Houwelingen 2006; He et al. 2016, whereas neither of them considered
the case of time-varying covariates. The existing algorithms, based either on
kernels T. Martinussen and T. H. Scheike 2009b; Tian, D. Zucker, and Wei
2005, or splines Yan and Jian Huang 2012; T. Honda and Härdle 2014; T.
Honda and Yabe 2017 are actually not scalable. For kernel estimators, model
selection is entirely based on tests and, consequently, do not support high-
dimensional covariates, see in particular the timereg package T. Scheike,
Martinussen, and Silver 2016. For estimators based on splines, this is simply
due to the fact that they involve dense predictor matrices. We refer the
reader to R. J. Tibshirani 2014 for a discussion on this fact in the simple
signal+noise model.
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We introduce, in the present paper, a new estimator, based on sieves propos-
als, as introduced in Murphy and Sen 1991. These proposals are penalized
via a data-driven and covariate specific total variation penalty, to which is
added a lasso penalty of the first coefficient (see Equation (13) for a proper
definition). This penalization induces covariates selection and temporal spar-
sity, and hence constant estimators. As the splines-based estimators of Yan
and Jian Huang 2012; T. Honda and Härdle 2014; T. Honda and Yabe 2017,
our estimator self-adapts to the three kinds of covariates: it selects covariates
that are relevant in the model, seek for constant estimators, for covariates
with constant coefficients, and gives a sieves estimate for covariates with
time-varying coefficients. Hence it addresses the first two aforementioned
difficulties.

Our estimator addresses the third difficulty in two ways. First, it is based on
sieves proposals, hence only involves sparse predictor matrices, as opposed to
splines methods. In addition, the optimization problems at hand are solved
via stochastic proximal gradient descent (SPGD) algorithms (see Bottou
2010; Bottou 2012; Rosasco, Villa, and Vu n.d.; Atchade, Fort, and Moulines
2014), and are, as such, scalable.

On the theoretical part, asymptotic rates of convergence have been estab-
lished in T. Honda and Härdle 2014; T. Honda and Yabe 2017 for the Cox
model with time-varying coefficients but only in the context of censored data.
To the best of our knowledge, there is no non-asymptotic results neither for
Cox nor Aalen models with time-varying coefficients. In the present paper,
we establish oracle inequalities for our penalized estimators of the complete
intensity function in the general counting processes setting for both Cox
and Aalen models with time-varying coefficients. We ameliorate the rates
of convergence established in T. Honda and Härdle 2014

The paper is organized as follows. Sections and are devoted to the frame-
work and the definition of our estimators. In Section we define our estima-
tion procedure and in Sectionsec:theory, we state the theoretical properties
of the estimators. In Section , we describe our algorithms. This section also
include an algorithm for simulating in time-varying Aalen and Cox model.
A quantitative comparison of the speeds of the different algorithms is pro-
posed. Simulation results and illustration on a real dataset are presented in
Section .
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Framework and models

Consider the usual counting process framework where a process Ñ counts
the number of occurring events of interest over a fixed time interval, say
[0, τ ] with 0 < τ < ∞, and the convention Ñ(0) = 0 (see Andersen et al.
1993; T. Martinussen and T. H Scheike 2007). Let λ⋆ denote the intensity
of the process Ñ depending on both time and a p-dimensional predictable
process of covariates denoted by X (possibly including an intercept).
We consider that the process Ñ may be independently filtered (see Andersen
et al. 1993) by a censoring predictable process Y and the resulting observed
process is denoted by N . The intensity of N is then given for all t ∈ [0, τ ]
by

Y (t)λ⋆(t, X(t)).

Assumption 1. We assume that P[Y (τ) > 0] > 0.

This is a classical hypothesis in survival analysis (see for instance Andersen
et al. 1993).

In this framework, we consider two dynamic models for the function λ⋆:

• a time-varying Aalen model

λA
⋆ (t, X(t)) = X(t)β⋆(t), (1)

• a time-varying Cox model

λM
⋆ (t, X(t)) = exp

(
X(t)β⋆(t)

)
, (2)

where, in both cases, β⋆ is an unknown function from [0, τ ] to Rp to be esti-
mated. We consider the problem of estimating the parameter β⋆ in dynamic
models (1) and (2) on the basis of data from n independent individuals:

Dn =
{
(Xi(t), Yi(t), Ni(t)) : t ∈ [0, τ ], i = 1, . . . , n

}
. (3)

Estimation in models (1) and (2) are received a lot of attention in the past
four decades. References for the additive Aalen model include Aalen 1980;
Aalen 1989; Aalen 1993; McKeague 1988; Huffer and McKeague 1991, for
the time-varying Cox models include D. M. Zucker and Karr 1990; Murphy
and Sen 1991; Grambsch and Therneau 1994; T. Martinussen, T. H. Scheike,
and Skovgaard 2002; Cai and Sun 2003; Winnett and Sasieni 2003 and very
recently Yan and Jian Huang 2012; T. Honda and Härdle 2014; T. Honda
and Yabe 2017. In T. Martinussen and T. H Scheike 2007 may be found a
complete presentation of the models, estimation methods and results. The
R package timereg, see Appendix C in T. Martinussen and T. H Scheike
2007, implements these procedures.
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These models are known extensions of the classical Aalen Aalen 1980 and
Cox D. R. Cox 1972 models with constant regression parameters. Dynamic
models are obviously more flexible than their constant counterparts, but
they suffer from their complexities: p unknown functions are to be estimated
from the data. We propose in the present paper a penalized procedure that
reaches a compromise between these two extreme situations, and in addition
performs variable selection.

Penalized piecewise constant estimators

Following Murphy and Sen 1991, we consider sieves (or histogram) based
estimators of the p-dimensional unknown function β⋆. We hence consider a
L-partition of the time interval [0, τ ], where L ∈ N∗ is to be defined later:

φl =

√
L

τ
1(Il) and Il =

( l − 1
L

τ,
l

L
τ

]
. (4)

For all j = 1, . . . , p, candidates for the estimation of the j-th coordinate β⋆
j

of β⋆ belongs to the set of univariate piecewise constant functions

HL =
{

α(·) =
L∑

l=1
αlφl(·) : (αl)1≤l≤L ∈ RL

+

}
. (5)

For moderate sample size n and/or high-dimensional covariates and/or a fine
partition, the resulting estimators would suffer from over-parametrization,
in the sense that

√
n could be much lesser than p × L. On the other hand,

simpler forms of Cox and Aalen models, when the functions β⋆
j are constant

over [0, τ ], are often too poor to accurate (see the discussions on page 205
and following in T. Martinussen and T. H Scheike 2007 and in Paragraph ).

We here seek to reach a compromise between these two extreme situations
by introducing a covariate specific weighted ℓ1 + ℓ1-total-variation penalty
(defined in (13)). The total-variation part in the penalty induces simple,
interpretable estimators, which do not vary much over the time. The ℓ1 part
allows our procedure to support high-dimensional (with a large p) covariates.

Our algorithms bears similarities with the class of fused Lasso algorithms.
The latter have been introduced and studied, for noised piecewise constant
signals, by R. Tibshirani et al. 2005, Rinaldo 2009, Harchaoui and Lévy-
Leduc 2010, or Dalalyan, M.H., and Lederer 2014. A total-variation penal-
ized estimator has been investigated in Alaya, Gaı̈ffas, and Guilloux 2015 for
estimating the intensity of a counting process, while Bouaziz and Guilloux
2015; Alaya, Gaı̈ffas, and Guilloux 2017 proposed related estimators in a
other context.
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Lasso estimators in the context of survival analysis with high-dimensional
covariates have been introduced and studied in T. Martinussen and T. H.
Scheike 2009a; Gaı̈ffas and Guilloux 2012 in the Aalen model and R. Tib-
shirani 1997; J. Huang et al. 2013; Lemler 2013 in the Cox model, among
others.

The main contributions of the paper are the following.

• Theoretical: we propose new estimators, see the definitions in (14)
and (15) for the problem at hand. We investigate their theoretical
properties by proving oracle inequalities, stated in Section , that assure
their convergences.

• Practical: we propose an algorithm, see Section , for computing our
estimators in the dynamic models of Equations (1) and (2). We demon-
strate in Section that they outperform existing algorithms in terms
of estimation precision, variable selection and timings.

Estimation procedures

We describe in this section our novel estimation procedures, which involve
a ℓ1 + ℓ1-total-variation penalization of criteria, specific to either the mul-
tiplicative or additive models. We first give more details on models (1)
and (2).

Estimation

Estimation in traditional models with constant coefficients is based on a min-
imization of a (partial) least-square criterion in the usual Aalen Aalen 1980
model and a (partial) log-likelihood maximization in the usual Cox D. R.
Cox 1972 model. We refer the reader to T. Martinussen and T. H. Scheike
2009a; Gaı̈ffas and Guilloux 2012 and D. R. Cox 1975 for the details.

We now introduce some notations. For each individual i with a p-
dimensional process of covariates Xi, we denote by Xj

i the process
associated to its j-th covariate. Accordingly, for any p-dimensional function
β, candidate for the estimation of β⋆, the univariate function βj is its j-th
coordinate. We define the sets of candidates for estimation as

ΛA = {x, t ∈ [0, τ ] 7→ λM
β (t, x(t)) = x(t)β(t) | ∀j, βj ∈ HL}. (6)

for the Aalen model (1) and

ΛM = {x, t ∈ [0, τ ] 7→ λM
β (t, x(t)) = exp

(
x(t)β(t)

)
| ∀j, βj ∈ HL}. (7)
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for the Cox model (2).
As for a candidate in ΛA or ΛM, each time-varying coefficient βj is piecewise
constant, we will refer equivalently to β as a p-dimensional function or as
the vector of dimension p× L

β = (β⊤
1,·, . . . , β⊤

p,·)⊤ = (β1,1, . . . , β1,L, . . . , βp,1, . . . , βp,L)⊤,

where βj,· is in RL and βj,l is the value taken by the j-th coordinate on the
l-th time interval in our L-partition {I1, . . . , IL}:

∀j = 1 . . . , p, ∀l = 1, . . . , L and ∀t ∈ Il, βj(t) =

√
L

τ
βj,l.

Estimation in the time varying Aalen and Cox models

The existing estimators in the additive (1) and multiplicative (2) models with
time varying coefficients are also defined via respectively the least-squares
and log-likelihood (see pages 108 and following and 206 and following in T.
Martinussen and T. H Scheike 2007).

The time-varying Aalen model. For the time-varying Aalen model, we
consider the least square criterion for our data and a candidate λA

β defined
by

ℓA
n (β) = 1

n

n∑
i=1

{ ∫ τ

0

(
λA

β (t, Xi(t))
)2

Yi(t)dt− 2
∫ τ

0
λA

β (t, Xi(t))dNi(t)
}

, (8)

see Gaı̈ffas and Guilloux 2012 for details on this criterion. When the candi-
date λA

β is in the class ΛA, Equation (8) simplifies to

ℓA
n (β) = 1

n

n∑
i=1

{ ∫ τ

0

( p∑
j=1

Xj
i (t)βj(t)

)2
Yi(t)dt− 2

∫ τ

0

p∑
j=1

Xj
i (t)βj(t)dNi(t)

}

= 1
n

n∑
i=1

L∑
l=1

{L

τ

∫
Il

( p∑
j=1

Xj
i (t)βj,l

)2
Yi(t)dt− 2

√
L

τ

p∑
j=1

( ∫
Il

Xj
i (t)dNi(t)

)
βj,l

}
.

(9)

The time-varying Cox model. We consider, in this paragraph, estima-
tion in the time-varying Cox model. Minus the log-likelihood for our data
and a candidate λM

β is given by

ℓM
n (β) =− 1

n

n∑
i=1

{ ∫ τ

0
log

(
λM

β (t, Xi(t))
)
dNi(t)−

∫ τ

0
Yi(t)λM

β (t, Xi(t))dt
}

,

(10)
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see Andersen et al. 1993 for details. When λM
β is in the class ΛM, the last

expression reduces to

ℓM
n (β) =− 1

n

n∑
i=1

{ ∫ τ

0

p∑
j=1

Xj
i (t)βj(t)dNi(t)−

∫ τ

0
Yi(t) exp

( p∑
j=1

Xj
i (t)βj(t)

)
dt

}

=− 1
n

n∑
i=1

L∑
l=1

{√
L

τ

p∑
j=1

( ∫
Il

Xj
i (t)dNi(t)

)
βj,l

−
∫

Il

Yi(t) exp
(√

L

τ

p∑
j=1

Xj
i (t)βj,l

)
dt

}
. (11)

Estimation procedure. We introduce a well-chosen vector of data-driven
weights γ̂ = (γ̂⊤

1,·, . . . , γ̂⊤
p,·)⊤. The weights γ̂j,l > 0 are fully data-driven, and

their shape is giving by

γ̂j,l = O
(√

log pL

n
V̂j,l

)
, with V̂j,l = 1

n

n∑
i=1

L∑
u=l

L

τ

∫
Iu

(Xj
i (t))2dNi(t). (12)

We write here only the dominating terms, see Definition 1 in Supplementary
Material for its explicit form. Our covariate specific weighted ℓ1 + ℓ1-total-
variation penalty is defined by

∥β∥gTV,γ̂ =
p∑

j=1

(
γ̂j,1|βj,1|+

L∑
l=2

γ̂j,l|βj,l − βj,l−1|
)

(13)

for any β ∈ RpL. Our estimators are then respectively defined as λ̂A = λA
β̂A

and λ̂M = λM
β̂M , where

β̂A = argminβ∈RpL

{
ℓA

n (β) + ∥β∥gTV,γ̂

}
, (14)

in the Aalen model, and

β̂M = argminβ∈RpL

{
ℓM

n (β) + ∥β∥gTV,γ̂

}
(15)

in the Cox model.

Theoretical guaranties

In this section we address the statistical properties of the weighted ℓ1 + ℓ1-
total-variation estimation procedure presented in the previous section. Our
first results establish theoretical properties of our estimators by using the
classical non-asymptotic oracle approaches.

8



Towards this end, we first introduce the weighted empirical quadratic norm
∥λA∥n defined for any λA ∈ ΛA by

∥λA∥n =

√√√√ 1
n

n∑
i=1

∫ τ

0

(
λA(t, Xi(t))

)2
Yi(t)dt,

and the empirical Kullback divergence Kn(λM
⋆ , λM

β ) defined for λM
β ∈ ΛM by

Kn(λM
⋆ , λM

β ) = 1
n

n∑
i=1

∫ τ

0

(
log λM

⋆ (t, Xi(t))− log λM
β (t, Xi(t))

)
λM

⋆ (t, Xi(t))Yi(t)dt

− 1
n

n∑
i=1

∫ τ

0

(
λM

⋆ (t, Xi(t))− λM
β (t, Xi(t))

)
Yi(t)dt.

Theorem 1. For x > 0 fixed, the estimator λ̂A defined in (14), verifies with
a probability larger than 1− CAe−x for a some constant CA > 0,

∥λA
⋆ − λ̂A∥2n ≤ inf

β∈RpL

(
∥λA

⋆ − λA
β ∥2n + 2∥β∥gTV,γ̂

)
. (16)

Theorem 2. For x > 0 fixed, the estimator λ̂M defined in (15), verifies with
a probability larger than 1− CMe−x for a some constant CM > 0,

Kn(λM
⋆ , λ̂M) ≤ inf

β∈RpL

(
Kn(λM

⋆ , λM
β ) + 2||β||gTV,γ̂

)
. (17)

The proofs of Theorems 1 and 2 are presented respectively in Section 1 of
Supplementary Material. Two terms are involved on the right hand side
of (16) and (17). The first one measures how far are the true functions of
interest λA

⋆ and λM
⋆ from their approximations on ΛA and ΛM. The second

one can be viewed as a variance term that satisfies

∥β∥gTV,γ̂ ≤ ∥β∥gTV max
j=1,...,p

max
l=1,...,L

√
log pL

n
V̂j,ℓ = O

(√
log(pL)

n

)
. (18)

for any β ∈ RpL. Here, ∥ · ∥gTV stands for the unweighted ℓ1 + ℓ1-
total-variation (γ̂j,l = 1). The dominant term in (18) is of order
∥β∥gTV

(
log(pL)/n

)1/2
, which is the expected slow rate for λ̂A and λ̂M

involving the total-variation penalization. Such oracle inequality is now clas-
sical in the huge literature of the sparsity procedures see for instance Bickel,
Ritov, and A. B. Tsybakov 2009; Gaı̈ffas and Guilloux 2012; Bunea, A.
Tsybakov, and Wegkamp 2007; Van de Geer and Bühlmann 2009; Alaya,
Gaı̈ffas, and Guilloux 2015; Hansen, Reynaud-Bouret, and Rivoirard 2015.
Most of these papers aim at establishing oracle inequalities under weak
assumptions on the design matrix.
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We establish in addition fast oracle inequalities for λA
⋆ and λM

⋆ respectively
(see Theorems S1 and S2 in Supplementary Material), leading to variance
terms of order with a variance term of order

log(pL)
n

.

In that sense, we improve the rate of convergence obtained in T. Honda
and Härdle 2014, which is of order

√
pL/n in L2-norm in a basis of size L.

Moreover, we established non-asymptotic oracle inequalities on the whole
intensity, whereas the results in T. Honda and Härdle 2014; T. Honda and
Yabe 2017 are only on the regression function β(t). To our best knowledge,
this is the only works that deal also with variable selection.

These fast oracle inequalities require additional assumptions of the restricted
eigenvalue (RE) assumption type. In classical setting, the RE assumption ex-
cludes strong correlations between covariates and it was introduced in Bickel,
Ritov, and A. B. Tsybakov 2009. In Van de Geer and Bühlmann 2009, one
can find an exhaustive survey and comparison of the assumptions used to
prove fast oracle inequalities.

Implementation and numerical experiments

Algorithms

For computing solutions (see Algorithm 2) of the regularized problems (14)
and (15) respectively,we implemented the proximal gradient descent (PGD)
algorithm (see Daubechies, Defrise, and De Mol 2004; Beck and Teboulle
2009; Bach et al. 2012; Parikh and Boyd 2014) via the fast iterative
shrinkage-thresholding procedure Beck and Teboulle 2009. In Algorithm 2
below, we need the proximal operator of the weighted ℓ1 +ℓ1-total-variation,
namely

prox∥·∥gTV,γ̂
(β) = argminx∈Rp×L

{1
2
∥β−x∥22+

p∑
j=1

(
γ̂j,1|xj,1|+

L∑
l=2

γ̂j,l|xj,l−xj,l−1|
)}

.

Since ∥ · ∥gTV,γ̂ is separable by blocks, we have
(

prox∥·∥gTV,γ̂
(β)

)
j,· =

prox∥·∥gTV,γ̂
(βj,·) for all j = 1, . . . , p (see Bach et al. 2012). Thus, we can

focus on a single j-th block. Algorithm 1 expresses prox∥·∥gTV,γ̂
(β) from

the proximal operator of the weighted total-variation penalization Alaya,
Gaı̈ffas, and Guilloux 2015, namely prox∥·∥TV,γ̂

.

Proposition 1. Algorithm 1 computes the proximal operator of the weighted
ℓ1 + ℓ1-total-variation given by (13).
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Algorithm 1: Proximal operator of the weighted ℓ1+ℓ1-total-variation
(see ())

input : vector β ∈ Rp×d and weights γ̂j,l for j = 1, . . . , p and
l = 1, . . . , L.

output: vector θ = prox∥·∥gTV,γ̂
(β)

1 for j = 1, . . . , p do
2 ηj,· ← prox∥·∥TV,ω̂j,·

(βj,·), where ω̂j,· = γ̂j,·\{γ̂j,1}
3 ϑj,· ← ηj,· − ηj,11L

4 θj,· ← ϑj,· + ηj,1 max
(
1− γ̂j,1

L|ηj,1| , 0
)
1L

5 return θ

Algorithm 2: PGD for the time-varying Aalen and Cox model,
see (14) and (15)

1. Parameters: Integer K > 0;, function ℓn (= ℓA
n or = ℓM

n )
2. Calculus of the Lipschitz constant L of the operator ∇ℓn;
3. Initialization: (β̂)(0) = 0 ∈ RpL; (µ̂)(0) = (β̂)(0); and t1 = 1;
4. for k = 1, . . . , K do

θ̂(k) ← µ̂(k) − 1
L∇ℓn(µ̂(k));

β̂(k) ← prox 1
L

∥·∥gTV,γ̂

(
θ̂(k));

tk+1 ←
1+
√

1+4t2
k

2 ;
µ(k+1) ← β̂(k) +

( tk−1
tk+1

)(
β̂(k) − β̂(k−1));

5. return β̂(K)

Details on the implementation

The data-driven weights of our algorithm are given in a compact form in
Equation (12) (and in exact form in Definition S1 in Supplementary material.
Following Equation (12), the weights used in practice are set to

γ̂j,l = γ

√
log pL

n

1
n

n∑
i=1

L∑
u=l

L

τ

∫
Iu

(Xj
i (t))2dNi(t) (19)

in our algorithm, where γ > 0 is a tunning parameter, which allows to
modulate the strength of the penalty. We select the best value using grid
search and a K-fold cross validation, based on the criterion at hand, e.g. the
log-likelihood in the multiplicative Cox model.
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Once a penalized estimator (refereed to as “CoxTV”) has been computed,
we compute each coefficient support and re-run an unpenalized estimation
on these supports. The estimator associated to this re-estimation is refereed
to as “On support” in what follows.

Simulated data in the time-varying Cox model

We carried out simulations in the time-varying Cox model for survival time
with different sample sizes (n = 100, n = 1000) to compare our estimator
to the splines-based group-lasso estimator of T. Honda and Härdle 2014
(refereed to as “H&H estimator”) and to the kernels-based estimator of the
timereg library T. Scheike, Martinussen, and Silver 2016 (refereed to as
“timereg estimator”). The estimator of T. Honda and Härdle 2014 (whose
code was kindly provided to us by T. Honda) is only implemented in the case
where individuals experience only one event and have constant covariates,
hence we restricted our simulations to this case. The implementation of
our estimator however allows time-varying covariates and/or with repeated
events (see Section 5 for an example).
The intensity of the process Ni for individual i (i = 1, . . . , n) is in this case
given by

t 7→ λ⋆(t, Xi(t))1Ni(t) ≤ 1,

and we set
λ⋆(t, X) = exp(β⋆

0(t) + Xβ⋆(t)).
The covariates Xi, i = 1, . . . , n, are realizations of i.i.d. centered Gaussian
random variables of dimension p, with variance proportional to the identity
matrix. The true function β⋆(t) is defined as:

• β⋆
0(t) = log

(
baata−1)

with a = 1.2 and b = 0.25, this corresponds to a
Weibull baseline,

• β⋆
1(t) = 0.18,

• β⋆
2(t) = 0.21(t ≤ 1 + 0.051(t > 1),

• β⋆
3(t) = 0.1t2,

and, for j > 3, we set β⋆
j (t) = 0. Given t 7→ λ⋆(t, Xi) and the covariates Xi,

i = 1, . . . , n, the times Ti were simulated as the first event of a nonhomoge-
neous Poisson process with intensity λ⋆(t, Xi) via thinning (see Lewis and
Shedler 1979).
Our estimator was computed with the weights of Equation (19) and the tun-
ning parameters was chosen via 3-fold cross-validation as described earlier.
In addition, we computed a second estimation with no penalty, as described
in Subsection 5.
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To evaluate the performance of the three estimators, we run M = 500 Monte-
Carlo experiments in the model described above. The estimation accuracy
of each estimator is investigated via a mean squared error defined as

MSE(β̂M
j,m) = 1

M

M∑
m=1

∫ τ

0

(
β̂M

j,m(t)− β⋆
j (t)

)2
,

where β̂M
j,m is the estimation of β⋆

j in the sample m, for j = 1, . . . , p. The
integrals are approximated on a grid of length 50 equispaced on [0, τ ]. We
then considered a cumulative MSE defined as

MSE(β̂M
m ) =

p∑
j=1

MSE(β̂M
j,m).

In addition, we evaluate the capacity of the estimators to detect no active
covariates. To this end, we define the numbers of true/false positives, and
true negatives as

TP(β̂M
m ) = #

{
j = 1, . . . , p : β̂M

j,m ̸= 0 and β⋆
j ̸= 0

}
FP(β̂M

m ) = #
{
j = 1, . . . , p : β̂M

j,m ̸= 0 and β⋆
j = 0

}
TN(β̂M

m ) = #
{
j = 1, . . . , p : β̂M

j,m = 0 and β⋆
j = 0

}
.

CoxTV H&H
TP FP TN TP FP TN

p = 5 4.27 0.00 0.00 3.30 0.00 0.00
p = 10 2.38 0.98 4.02 4.20 3.00 2.00
p = 50 1.00 3.00 42.00 NA NA NA

Table 1: True/false positives, true negatives for n = 100, “NA” values indi-
cate that the algorithm did not converge.

CoxTV
TP FP TN

p = 10 4.47 1.92 3.08
p = 50 3.76 4.15 40.85
p = 100 3.61 6.78 88.22

Table 2: True/false positives, true negatives for n = 1000, “NA” values
indicate that the algorithm did not converge.
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CoxTV On support H&H timereg
p = 5 4.32 2.35 1.56 2.33
p = 10 4.70 2.53 1.45e+5 10.88
p = 50 4.93 4.39 NA NA

Table 3: MSE for n = 100, “NA” values indicate that the algorithm did not
converge.

CoxTV On support H&H timereg
p = 10 1.95 0.54 NA 0.62
p = 50 3.55 0.78 NA 4.56
p = 100 4.39 1.20 NA 23.81

Table 4: MSE for n = 1000, “NA” values indicate that the algorithm did
not converge.

The results show that our penalized estimator performs well in selecting
active variables and setting coefficients of non active variables to zero, see
Tables 1 for a comparison with the estimator in T. Honda and Härdle 2014
in the situation where n = 100. For larger n, the selection performances are
still very satisfactory, see Table 2. As a consequence, in situations where p
reaches (or exceeds)

√
n, the “On support” version of our estimator outper-

forms both the estimator of T. Honda and Härdle 2014 and the one of T.
Scheike, Martinussen, and Silver 2016 in terms of mean square error, see
Tables 3 and 4.

We insist in addition that our method outperforms existing estimators, the
ones of T. Honda and Härdle 2014 and T. Scheike, Martinussen, and Silver
2016 in terms of time of computation, as soon as n is larger than 100. In
Table 5, we report timings for the three methods, notice that for our method
(we consider the timings of the first fit and the re-fit as one estimation step)

CoxTV + On support H&H Timereg
n = 100 and p = 5 11.05 19.69 0.71

n = 1000 and p = 10 1.63 NA 49.36

Table 5: Timings in minutes
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Figure 1: Estimated regression coefficients on PBC data: with “CoxTV”
(dark blue), “On support” (light blue), “H&H”(brown) and “timereg” esti-
mation (magenta).

Real data

Our method is illustrated on PBC dataset described in Fleming and Harring-
ton 1991, and originates from a Mayo Clinic trial in primary biliary cirrhosis
(PBC) of the liver and was conducted between 1974 and 1984. A total of
418 patients are included in the dataset and were followed until death or
censoring. We restrict attention to the first 8 years days of the study, and
we consider the covariates: age, edema, log(bilirubin), log(albumin) and
log(protime), as in the example 6.0.2 of T. Martinussen and T. H Scheike
2007. All covariates are centered around their averages. We estimated
the regression coefficients on PBC data with the four methods: our meth-
ods (“CoxTV”, and “On support”), the estimator of T. Honda and Härdle
2014 (“‘H&H”) and the timereg estimator(in R package timereg T. Scheike,
Martinussen, and Silver 2016). The good performances of our estimators are
illustrated in Figure 1. Our estimators and the one of T. Honda and Här-
dle 2014 (“‘H&H”) share the nice property of being smoother than the one
obtained via R package timereg T. Scheike, Martinussen, and Silver 2016.
The first methods hence give easily interpretable estimated coefficient. In
this example, our method also performs variable selection (the coefficient
of “age” is set as zero), which is not the case for the competing methods.
These results give an illustration of the nice behavior of our estimators seen
in Section .
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