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Abstract

We address the problem of unsupervised domain adaptation under the
setting of generalized target shift (joint class-conditional and label shifts).
For this framework, we theoretically show that, for good generalization,
it is necessary to learn a latent representation in which both marginals
and class-conditional distributions are aligned across domains. For this
sake, we propose a learning problem that minimizes importance weighted
loss in the source domain and a Wasserstein distance between weighted
marginals. For a proper weighting, we provide an estimator of target
label proportion by blending mixture estimation and optimal matching by
optimal transport. This estimation comes with theoretical guarantees of
correctness under mild assumptions. Our experimental results show that
our method performs better on average than competitors across a range
domain adaptation problems including digits,VisDA and Office. Code for
this paper is available at https://github.com/arakotom/mars_domain_

adaptation.

1 Introduction

Unsupervised Domain Adaptation (UDA) is a machine learning subfield that
aims at addressing issues due to the discrepancy of train/test data distribu-
tions. There exists a large amount of literature addressing the UDA problem
under different assumptions. One of the most studied setting is based on the
covariate shift assumption (pS(x) 6= pT (x) and pS(y|x) = pT (y|x)) for which
methods perform importance weighting Sugiyama et al. (2007) or aim at aligning
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the marginal distributions in some learned feature space Pan et al. (2010); Long
et al. (2015); Ganin & Lempitsky (2015). Target shift, also denoted as label shift
(Schölkopf et al., 2012) assumes that pS(y) 6= pT (y) while pS(x|y) = pT (x|y).
For this problem, most works seek at estimating either the ratio pT (y)/pS(y) or
the label proportions (Lipton et al., 2018; Azizzadenesheli et al., 2019; Shriku-
mar et al., 2020; Li et al., 2019; Redko et al., 2019).

However as most models now learn the latent representation space, in prac-
tical situations we have both a label shift (pS(y) 6= pT (y)) and class-conditional
probability shift ) (pS(z|y) 6= pT (z|y), z being a vector in the latent space).
For this more general DA assumption, denoted as generalized target shift, fewer
works have been proposed. Zhang et al. (2013) have been the first authors
that proposed a methodology for handling both shifts. They used a kernel em-
bedding of distributions for estimating importance weights and for transforming
samples so as to match class-conditional distributions. Gong et al. (2016) follow
similar idea by assuming that there exists a linear mapping that maps source
class-conditionals to the target ones. For addressing the same problem Wu et al.
(2019) introduced a so-called asymmetrically-relaxed distance on distributions
that allows to mitigate the effect of label shift when aligning marginal distribu-
tions. Interestingly, they also show that, when marginals in the latent space are
aligned, error in the target domain is lower-bounded by the mismatch of label
distributions between the two domains. Very recently, Combes et al. (2020)
have presented a theoretical analysis of this problem showing that target gener-
alization can be achieved by matching label proportions and class-conditionals
in both domains. The key component of their algorithm relies on a importance
weight estimation of the label distributions. Unfortunately, although relevant in
practice, their label distribution estimator got theoretical guarantee only when
class conditionals match across domains and empirically breaks as soon as class
conditionals mismatch becomes large enough.

Our work addresses UDA with generalized target shift and we make the
following contributions. From a theoretical side, we introduce a bound which
clarifies the role of the label shift and class-conditional shift in the target gen-
eralization error bound. Our theoretical analysis emphasizes the importance of
learning with same label distributions in source and target domains while seeking
at minimizing class-conditional shifts in a latent space. Based on this theory, we
derive a learning problem and an algorithm which aims at minimizing Wasser-
stein distance between weighted marginals while ensuring low empirical error in
a weighted source domain. Since a weighting scheme requires the knowledge of
the label distribution in the target domain, we solve this estimation problem by
blending a consistent mixture proportion estimator and an optimal matching
assignment problem. While conceptually simple, our strategy is supported by
theoretical guarantees of correctness. Then, given the estimated label propor-
tion in the target domain, we theoretically show that finding a latent space in
which the Wasserstein distance between the weighted source marginal distribu-
tion and the target one have zero distance, guarantees that class-conditionals
are also matched. We illustrate in our experimental analyses how our algorithm
(named MARS from Match And Reweight Strategy) copes with label and class-
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conditional shifts and show that it performs better than other generalized target
shift competitors on several UDA problems.

2 Notation and Background

Let X and Y be the input and output space. We denote by Z the latent space
and G the class of representation mappings from X to Z. Similarly, H represents
the hypothesis space, which is a set of functions from Z to Y. A labeling function
f is a function from X to Y. Elements of X , Y and Z are respectively noted as
x, y and z. For our UDA problem, we assume a learning problem with source
and target domains and respectively note as pS(x, y) and pT (x, y) their joint
distributions of features and labels. We have at our disposal a labeled source
dataset {(xsi , ysi )}

ns
i=1 with ysi ∈ {1 . . . C} and only unlabeled examples from

the target domain {xti}
nt
i=1 with all xi ∈ X , sampled i.i.d from their respective

distributions. We refer to the marginal distributions of the source and target
domains in the latent space as pgS(z) and pgT (z). Class-conditional probabilities
in the latent space and label proportion for class j will be respectively noted as
pjU , pU (z|y = j) and py=j

U , pU (y = j) with U ∈ {S, T}. Finally, we defer
proofs of the theoretical results to the appendix.

2.1 Domain adaptation framework

Since the seminal work of Pan et al. (2010); Long et al. (2015); Ganin & Lem-
pitsky (2015), a common formulation of the covariate shift domain adaptation
problem is to learn a mapping of the source and target samples into a latent
representation space where the distance between their marginal distributions is
minimized and to learn a hypothesis that correctly predicts labels of samples
in the source domain. This typically translates into the following optimization
problem:

min
h,g

1

n

ns∑
i=1

L(ysi , h(g(xsi ))) + λD(pgS , p
g
T ) + Ω(h, g) (1)

where h(·) is the hypothesis, g(·) a representation mapping and L(·, ·) : Y×Y 7→
R+ is a continuous loss function differentiable on its second parameter and Ω
a regularization term. Here, D(·, ·) is a distance metric between distributions
that measures discrepancy between source and target marginal distributions as
mapped in a latent space induced by g. Most used distance measures are MMD
Tzeng et al. (2014), Wasserstein distance Shen et al. (2018) or Jensen-Shannon
distance Ganin et al. (2016).

2.2 Optimal Transport (OT)

We provide here some background on optimal transport as it will be a key
concept for assigning label proportion. More details can be found in Peyré et al.
(2019). Optimal transport measures the distance between two distributions
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over a space X given a transportation cost c : X × X → R+. It seeks for an
optimal coupling between the two measures that minimizes a transportation
cost. In a discrete case, we denote the two measures as µ =

∑n
i=1 aiδxi

and
ν =

∑m
i=1 biδx′i . The Kantorovitch relaxation of the OT problem seeks for a

transportation coupling P that minimizes the problem

min
P∈Π(a,b)

〈C,P〉 (2)

where C ∈ Rn×m is the matrix of all pairwise costs, Ci,j = c(xi, x
′
j) and

Π(a,b) = {P ∈ Rn×m+ |P1 = a,P>1 = b} is the transport polytope between
the two distributions. The above problem is known as the discrete optimal
transport problem and in the specific case where n = m and the weights a and
b are positive and uniform then the solution of the above problem is a scaled
permutation matrix (Peyré et al., 2019). One of the key features of OT that we
are going to exploit for solving the domain adaptation problem is its ability to
find correspondences between samples in an unsupervised way by exploiting the
underlying space geometry. These features have been for instance exploited for
unsupervised word translation Alvarez-Melis et al. (2019); Alaux et al. (2019).

3 Theoretical insights

In this work, we are interested in a situation where both class-conditional and
label shifts occur between source and target distributions i.e there exists some
j so that pS(z|y = j) 6= pT (z|y = j) and py=j

S 6= py=j
T . Because we have these

two sources of mismatch, the resulting domain adaptation problem is difficult
and aligning marginals is not sufficient Wu et al. (2019).

For better understanding the key aspects of the problem, we provide an
upper bound on the target generalization error which exhibits the role of class-
conditional and label distribution mismatches. For a sake of simplicity, we will
consider binary classification problem. Let X be the input space and assume
that the function f : X 7→ [0, 1] be the domain-invariant labeling function, which
is a classical assumption in DA (Wu et al., 2019; Shen et al., 2018). For a domain
U , with U = {S, T}, the induced marginal probability of samples in Z is for-
mally defined as pgU (A) = pU (g−1(A)) for any subset A ⊂ Z and g−1(A) being
potentially a set (pgU (A) is thus the push-forward of pU (x) by g(·)). Similarly, we
define the conditional distribution gU (·|z) such that pU (x) =

∫
gU (x|z)pgu(z)dz

holds for all x ∈ X . For a representation mapping g, an hypothesis h and the la-
beling function f , the expected risk is defined as εU (h◦g, f) , Ex∼pU [|h(g(x))−
f(x)|] = Ez∼pzU [|h(z)− fgU (z)|] , εzU (h, fgU ) with fgU being a domain-dependent
labeling function defined as fgU (z) =

∫
f(x)gU (x|z)dx.

Now, we are in position to derive a bound on the target error but first, we
introduce a key intermediate result.

Lemma 1. Assume two marginal distributions pgS and pgT , with pgU =
∑C
k=1 p

y=k
U pkU ,

U = {S, T}. For all pyT , pyS and for any continuous class-conditional density
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distribution pkS and pkT such that for all z and k, we have pS(z|y = k) > 0
and pS(y = k) > 0, the inequality supk,z[w(z)Sk(z)] ≥ 1 holds with Sk(z) =
pT (z|y=k)
pS(z|y=k) and w(z) =

py=k
T

py=k
S

, if z is of class k.

Intuitively, this lemma says that the maximum ratio between class-conditionals
weighted by label proportion ratio is lower-bounded by 1, and that potentially,
this bound can be achieved when both py=k

S = py=k
T and pkS = pkT . Interestingly,

Wu et al. (2019)’s results involve a similar term supz
pgT (z)

pgS(z)
for defining their

assymetrically-relaxed distribution distance. But we use a finer modeling that
allows us to explicitly disentangle the role of the class-conditionals and label
distribution ratio. In our case, owing to this inequality, we can bound one of
the key term that upper bounds the generalization error in the target domain.

Theorem 1. Under the assumption of Lemma 1, and assuming that any func-
tion h ∈ H is K-Lipschitz and g is a continuous function then for every function
h and g, we have

εT (h ◦ g, f) ≤ εS(h ◦ g, f) + 2K ·WD1(pgS , p
g
T )

+

[
1 + sup

k,z
w(z)Sk(z))

]
εS(h? ◦ g, f)

+ εzT (fgS , f
g
T )

where Sk(z) and w(z) are as defined in Lemma 1, h? = arg minh∈H εS(h ◦ g; f)
and εzT (fgS , f

g
T ) = Ez∼pzT [|fgT (z)−fgS(z)|] and WD1 defined through its dual form

as
WD1(pgS , p

g
T ) = sup

‖v‖L≤1

Ez∼pgSw(z)v(z)−Ez∼pgT v(z)

with w(·) = 1.

Let us analyze the terms that bound the target generalization error. The
first term εS(h◦g, f) , εzS(h, fgS) can be understood as the error induced by the
hypothesis h and the mapping g. This term is controllable through an empirical
risk minimization approach as we have some supervised training data available
from the source domain. The second term is the Wasserstein distance between
the marginals of the source and target distribution in the latent space. Again,
this can be minimized based on empirical examples and the Lipschitz constant K
can be controlled either by regularizing the model g(·) or by properly setting the
architecture of the neural network model used for g(·). The last term εT (fgS , f

g
T )

is not directly controllable (Wu et al., 2019) but it becomes zero if the latent
space labelling function is domain-invariant which is a reasonable assumption
especially when latent joint distributions of the source and target domains are
equal. The remaining term that we have to analyze is supk,z[w(z)Sk(z)] which
according to Lemma 1 is lower bounded by 1. This lower bound is attained
when the label distributions are equal and class-conditional distributions are all
equal and in this case, the joint distributions in the source and target domains
are equal and thus εzT (fgS , f

g
T ) = 0.
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4 Match and Reweight Strategy

4.1 The learning problem

The bound in Theorem 1 suggests that a good model should: i) look for a latent
representation mapping g and a hypothesis h that generalizes well on the source
domain, ii) have minimal Wasserstein distance between marginal distributions
of the latent representations while having class-conditional probabilities that
match, and iii) learn from source data with equal label proportions as the target
so as to have w(z) = 1 for all z. For yielding our learning problem, we will
translate these properties into an optimization problem.

At first, let us note that one simple and efficient way to handle mismatch
in label distribution is to consider importance weigthing in the source do-
main. Hence, instead of learning from the marginal source distribution pS =∑C
k=1 p

y=k
S pkS , we learn from a reweighted version denoted as pS̃ =

∑C
k=1 p

y=k
T pkS ,

as proposed by Sugiyama et al. (2007); Combes et al. (2020), so that no label

shift occurs between pS̃ and pT . This approach needs an estimation of py=k
T

that we will detail in the next subsection, but interestingly, in this case, for

Theorem 1, we will have w(z) =
py=k
T

py=k

S̃

=
py=k
T

py=k
T

= 1. Then, based on the bound

in Theorem 1 applied to pS̃ and pT , we propose to learn the functions h and g
by solving the problem

min
g,h

1

n

ns∑
i=1

w†(xsi )L(ysi , h(g(xsi ))) + λWD1(pg
S̃
, pgT ) + Ω(h, g) (3)

where the importance weight w†(xsi ) =
p
y=yi
T

p
y=yi
S

allows to simulate sampling from

pg
S̃

given pgS , and the discrepancy between marginals is the Wasserstein distance

WD1(p̃gs , p
g
t ) = sup

‖v‖L≤1

Ez∼pgSw
†(z)v(z)−Ez∼pgT v(z). (4)

The first term of equation (3) corresponds to the empirical loss related to
the error εS̃ in Theorem 1 while the distribution divergence aims at mini-
mizing distance between marginal probabilities, the second term in that the-
orem. In the next subsections, we will make clear why the Wasserstein distance
is used as the divergence and provide conditions and guarantees for having
WD1(p̃gS , p

g
T ) = 0 =⇒ WD(pkS , p

k
T ) = 0, i.e. perfect class-conditionals match-

ing, and thus Sk(z) = 1 for all k, z. Recall that in this case, the lower bound
on maxk,z[w(z)Sk(z)] will be attained.

Algorithmically, for solving the problem in Equation (3), we employ a clas-
sical adversarial learning strategy. It is based on a standard back-propagation
strategy using stochastic gradient descent (detailed in Algorithm 1). We esti-
mate the label proportion using Algorithm 2 and then use this proportion for
computing the importance weights w(·). The first part of the algorithm con-
sists then in computing the weighted Wassertein distance using gradient penalty
(Gulrajani et al., 2017). Once this distance is computed, we back-propagate the
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Algorithm 1 Training the full MARS model

Require: {(xsi , ysi )}, {xti}, number of classes C, batch size B, number of critic
iterations n

1: Initialize representation mapping g, the classifier h and the domain critic
v(·), with parameters θh, θg, θv

2: repeat
3: estimate pT from {xti} using Algorithm 2 {done every 10 iterations}
4: sample minibatches {(xsB , ysB)}, {xtB} from {(xsi , ysi )} and {xti}
5: compute {w†i }Ci=1 given {(xsB , ysB)} and pT
6: for t = 1, · · · , n do
7: zs ← g(xsB), zt ← g(xtB)
8: compute gradient penalty Lgrad

9: compute empirical Wasserstein dual loss Lwd =
∑
i w
†(zsi )v(zsi ) −

1
B

∑
i v(zti)

10: θv ← θv + αv∇θv [Lwd − Lgrad]
11: end for
12: compute the weighted classification loss Lw =

∑
i w
†(zsi )L(ysi , h(g(xsi )))

13: θh ← θh − αh∇θhLw
14: θg ← θg − αg∇θg [Lw + λLwd]
15: until a convergence condition is met

error through the parameters of the feature extractor g and the classifier f . In
practice, we use weight decay as regularizer Ω over the representation mapping
and classifier functions g and h.

4.2 Estimating target label proportion using optimal as-
signment

The above learning problem needs an estimation of PT (y) for weighting the
classification loss and for computing the Wasserstein distance between pg

S̃
and

pgT . Several approaches exist for estimating pyT when class-conditional distribu-
tions in source and target matches Redko et al. (2019); Combes et al. (2020).
However, this is not the case in our general setting. Hence, in order to make
the problem tractable, we will introduce some assumptions on the structure and
geometry of the class-conditional distributions in the target domain that allow
us to provide guarantee on the correct estimation of pyT .

For achieving this goal, we first consider the target marginal distribution
as a mixture of models and estimate the proportions of the mixture. Next we
aim at finding a permutation σ(·) that guarantees, under mild assumptions,
correspondence between the class-conditional probabilities of same class in the
source and target domain. Then, this permutation allows us to correctly assign
a class to each mixture proportion leading to a proper estimation of each class
label proportion in the target domain.

In practice, for the first step, we assume that the target distribution is a
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Algorithm 2 Label proportion estimation in the target domain

Require: {(xsi , ysi )}, {xti}, number of classes C
Ensure: pT : Estimated label proportion

1: {pjT },pu ← Estimate a mixture with C modes and related proportions from
{xti}.

2: D← Given D, compute the matrix pairwise distance {piS} and {pjT } modes.
3: P? ← Solve OT problem (2) with D and uniform marginals as in Proposition

1.
4: pT ← C · P?pu Permute the mixture proportion on source ( C · P? is a

permutation matrix)

mixture model with C components {pjT } and we want to estimate the mix-
ture proportion of each component. For this purpose, we have considered two
alternative strategies coming from the literature : i) applying agglomerative
clustering on the target samples tells us about the membership class of each
sample and thus, the resulting clustering provides the proportion of each com-
ponent in the mixture. ii) learning a Gaussian mixture model over the data in
the target domain. This gives us both the estimate components {pjT } and the
proportion of the mixture pu. Under some conditions on its initialization and
assuming the model is well-calibrated, Zhao et al. (2020) have shown that the
sample estimator asymptotically converges towards the true mixture model.

Matching class-conditionals with OT Since, we do not know to which
class each component of the mixture in target domain is related to, we assume
that the conditional distribution in the source and target domain of the same
class can be matched owing to optimal assignment. The resulting permutation
would then help us assign each label proportion estimated as above to the correct
class-conditional. Figure 1 in the appendix illustrates this matching problem.

Let us suppose that we have an estimation of all C class-conditional probabil-
ities on source and target domain (based on empirical distributions). We want
to solve an optimal assignment problem with respect to the class-conditional
probabilities {piS}Ci=1 and {pjT }Cj=1 and we clarify under which conditions on
distance between class-conditional probabilities, the assignment problem solu-
tion achieves a correct matching of classes (i.e piS is correctly assigned to piT
for all i). Formally, denote as P the set of probability distributions over Rd
and assume a metric over P. We want to optimally assign a finite number C of
probability distributions of P to another set of finite number C of probability
distributions belonging to P, in a minimizing distance sense. Based on a distance
D between couple of class-conditional probability distributions, the assignment

problems looks for the permutation that solves minσ
1
C

∑
j D(pjS , p

σ(j)
T ). Note

that the best permutation σ? solution to this problem can be retrieved by solv-
ing a Kantorovitch relaxed version of the optimal transport (Peyré et al., 2019)
with marginals a = b = 1

C1. Hence, this OT-based formulation of the matching
problem can be interpreted as an optimal transport one between discrete mea-
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sures of probability distributions of the form 1
C

∑C
j=1 δpjU

. In order to be able

to correctly match class-conditional probabilities in source and target domain
by optimal assignement, we ask ourselves:

Under which conditions the retrieved permutation matrix would correctly
match the class-conditionals?

In other word, we are looking for conditions of identifiability of classes in
the target domain based on their geometry with respect to the classes in source
domain. Our proposition below presents an abstract sufficient condition for
identifiability based on the notion of cyclical monotonicity and then we exhibit
some practical situations in which this property holds.

Proposition 1. Denote as ν = 1
C

∑C
j=1 δpjS

and µ = 1
C

∑C
j=1 δpjT

, represent-

ing respectively the balanced weighted sum of class-conditionals probabilities in
source and target domains. Given D a distance over probability distributions,
assume that for any permutation σ of C elements, the following assumption,
known as the D-cyclical monotonicity relation, holds∑

j

D(pjS , p
j
T ) ≤

∑
j

D(pjS , p
σ(j)
T )

then solving the optimal transport problem between ν and µ as defined in equation
(2) using D as the ground cost matches correctly class-conditional probabilities.

While the cyclical monotonicity assumption above can be hard to grasp,
there exists several situations where it applies. One condition that is sim-
ple and intuitive is when class-conditionals of same source and target classes
are ”near” each other in the latent space. More formally, if we assume that
∀j D(pjS , p

j
T ) ≤ D(pjS , p

k
T ) ∀ k, then summing over all possible j, and choosing

k so that all the couples of (j, k) form a permutation, we recover the cycli-

cal monotonicity condition
∑C
j D(pjS , p

j
T ) ≤

∑D
j (pjS , p

σ(j)
T ),∀σ. Another more

general condition on the identifiability of the target class-conditional can be re-
trieved by exploiting the fact that, for discrete optimal transport with uniform
marginals, the support of optimal transport plan satisfies the cyclical mono-
tonicity condition (Santambrogio, 2015). This is for instance the case, when pjS
and pjT are Gaussian distributions of same covariance matrices and the mean

mj
T of each pjT is obtained as a linear symmetric positive definite mapping of

the mean mj
S of pjS and the distance D(pjS , p

j
T ) is ‖mj

S −m
j
T ‖22 (Courty et al.,

2016). This situation would correspond to a linear shift of the class-conditionals
of the source domain to get the target ones. Figure 1 illustrates how our class-
conditional matching algorithm performs on a simple toy problem. While our
assumptions can be considered as strong, we illustrate in Figure 4, that the
above hypotheses hold for the VisDA problem, and lead afterwards to a correct
matching of the class-conditionals.

It is interesting to compare our assumptions on identifiability to other hy-
potheses proposed in the literature for solving (generalized) target shift prob-
lems. When handling only target shift, one common hypothesis Redko et al.
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(2019) is that class-conditional probabilities are equal. This in our case boils
down to have a 0 distance between D(P jS , P

j
T ) guaranteeing matching under

our more general assumptions. When both shifts occur on labels and class-
conditionals, Wu et al. (2019) assume that there exists continuity of support
between the p(z|y) in source and target domains. Again, this assumption may
be related to the above minimum distance hypothesis if class-conditionals in
source domain are far enough. Interestingly, one of the hypothesis of Zhang
et al. (2013) for handling generalized target shift is that there exists a linear
transformation between the class-conditional probabilities in source and target
domains. This is a particular case of our Proposition 1 and subsequent dis-
cussion, where the mapping between class-conditionals is supposed to be linear.
Our conditions for correct matching and thus for identifying classes in the target
domain are more general than those proposed in the current literature.

4.3 When matching marginals lead to matched class-conditionals?

In our learning problem, since one term we aim at minimizing is WD1(pg
S̃
, pgT ),

with pg
S̃

=
∑
j p

y=j
T pjS and pgT =

∑
j p

y=j
T pjT , we want to understand under which

assumptions WD1(pg
S̃
, pgT ) = 0 implies that pS(z|y = j) = pT (z|y = j) for all

j, which is key for a good generalization as stated in Theorem 1. Interestingly,
the assumptions needed for guaranteeing this implication are the same as those
in Proposition 1.

Proposition 2. Denote as γ the optimal coupling plan for distributions ν and
µ defined as balanced weighted sum of class-conditionals that is ν = 1

C

∑C
j=1 δpjS

and µ = 1
C

∑C
j=1 δpjT

under assumptions given in Proposition 1. Assume that

the classes are ordered so that we have γ = 1
C diag(1). Then γ′ = diag(a) is

also optimal for the transportation problem with marginals ν′ =
∑C
j=1 ajδpjS

and µ′ =
∑C
j=1 ajδpjT

, with aj > 0,∀j. In addition, if the Wasserstein distance

between ν′ and µ′ is 0, it implies that the distance between class-conditionals are
all 0.

Applying this proposition with aj = py=j
T brings us the guarantee that un-

der some geometrical assumptions on the class-conditionals in the latent space,
having WD1(p̃gS , p

g
T ) = 0 implies matching of the class-conditionals, resulting

in a minimization of maxk,z w(z)Sk(z) (remind that w(z) = 1 as mixture com-

ponents pjS and pjT of pg
S̃

and pgT are both weighted by py=j
T for all j, since we

learn using pg
S̃

).

5 Discussions

From a theoretical point of view, several works have pointed out the limitations
of learning domain invariant representations. Johansson et al. (2019), Zhao et al.
(2019) and Wu et al. (2019) have introduced some generalization bounds on the
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target error that show the key role of label distribution and conditional distri-
bution shifts when learning invariant representations. Importantly, Zhao et al.
(2019) and Wu et al. (2019) have shown that in a label shift situation, minimiz-
ing source error while achieving invariant representation will tend to increase
the target error. In our work, we introduce an upper bound that clarifies the
importance of learning invariant representations that also align class-conditional
representations in source and target domains.

Algorithmically, most related works are the one by Wu et al. (2019) and
Combes et al. (2020) that also address generalized target shift. The first ap-
proach does not seek at estimating label proportion but instead allows flexibil-
ity in the alignment by using an assymetrically-relaxed distance. In the case of
Wasserstein distance, the approach of Wu et al. (2019) consists in reweighting
the marginal of the source distribution and in its dual form, their distance boils
to

WDw(pS , pT ) = sup
‖v‖L≤1

Ex∼pSw(x)v(x)−Ex∼pT v(x)

where w(·) is actually a constant 1
1+β . We can note that the adversarial loss we

propose is a general case of this one. Indeed, in the above, the same amount of
weighting applies to all the samples of the source distribution. At the contrary,
our reweighting scheme depends on the class-conditional probability and their
estimate target label proportion. Hence, we believe that our approach would
adapt better to imbalance without the need to tune β (by validation for instance,
which is hard in unsupervised domain adaptation). The work of Combes et al.
(2020) and our differs only in the way the weights w(x) are estimated. In
our case, we consider a theoretically supported and consistent estimation of
the target label proportion, while they directly estimate w(·) by applying a
technique tailored and grounded for problems without class-conditional shifts.
We will show in the experimental section that their estimator in some cases lead
to poor generalization.

Still in the context of reweighting, Yan et al. (2017) proposed a weighted
Maximum Mean discrepancy distance for handling target shift in UDA. How-
ever, their weights are estimated based on pseudo-labels obtained from the
learned classifier and thus, it is difficult to understand whether they provide
accurate estimation of label proportion even in simple setting. While their dis-
tance is MMD-transposed version of our weighted Wasserstein, our approach
applies to representation learning and is more theoretically grounded as the
label proportion estimation is based on sound algorithm with proven conver-
gence guarantees (see below) and our optimal assignment assumption provides
guarantees on situations under which class-conditional probability matching is
correct.

The idea of matching moment of distributions have already been proven to
be an effective for handling distribution mismatch. About ten years ago, Huang
et al. (2007); Gretton et al. (2009); Yu & Szepesvári (2012) already leveraged
such an idea for handling covariate shift by matching means of distributions in
some reproducing kernel Hilbert space. Li et al. (2019) recycled the same idea
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for label proportion estimation and extended the idea to distribution matching.
Interestingly, our approach differs on its usage. While most above works employ
mean matching for density ratio estimation or for label proportion estimation,
we use it as a mean for identifying displacement of class-conditional distributions
through optimal assignment/transport. Hence, it allows us to assign estimated
label proportion to the appropriate class.

For estimating the label proportion, we have proposed to learn a Gaussian
mixture model of the target distribution. By doing so we are actually trying
to solve a harder problem than necessary. However, once the target distri-
bution estimation has been evaluated and class-conditional probabilities being
assigned from the source class, one can use that Gaussian mixture model for
labelling the target samples. Note however that Gaussian mixture learned by
expectation-minimization can be hard to estimate especially in high-dimension
Zhao et al. (2020) and that the speed of convergence of the EM algorithm
depends on smallest mixture weights Naim & Gildea (2012). Hence, in high-
dimension and/or highly imbalanced situations, one may get a poor estimate
of the target distribution. Nonetheless, one can consider other non-EM ap-
proach Kannan et al. (2005); Arora et al. (2005). Hence, in practice, we can
expect the approach GMM estimation and OT-based matching to be a strong
baseline in low-dimension and well-clustered mixtures setting but to break in
high-dimension one.

6 Numerical Experiments

We present in this section some experimental analyses of the proposed al-
gorithm on a toy dataset as well as on real-world visual domain adaptation
problems. The code for reproducing part of the experiments is available at
https://github.com/arakotom/mars_domain_adaptation.

6.1 Experimental setup

Our goal is to show that among algorithms tailored for handling generalized
target shift, our method is the best performing one (on average). Hence, we
compare with two very recent methods designed for generalized target shift and
with two domain adaptation algorithms tailored for covariate shift for sanity
check.

As a baseline, we consider a model, denoted as Source trained for f and
g on the source examples and tested without adaptation on the target exam-
ples. Two other competitors use respectively an adversarial domain learning
Ganin et al. (2016) and the Wasserstein distance Shen et al. (2018) computed
in the dual as distances for measuring discrepancy between pS and pT , denoted
as DANN and WDβ=0. We consider the model proposed by Wu et al. (2019)
and Combes et al. (2020) as competing algorithms able to cope with general-
ized target shift. For this former approach, we use the asymmetrically-relaxed
Wasserstein distance so as to make it similar to our approach and also report

12

https://github.com/arakotom/mars_domain_adaptation


results for different values of the relaxation β. This model is named WDβ with
β ≥ 1. The Combes et al. (2020)’s method, named IW-WD (for importance
weighted Wasserstein distance) solves the same learning problem as ours and
differs only on the way the ratio w(x) is estimated. Our approaches are denoted
as MARSc or MARSg respectively when estimating proportion by hierarchical
clustering or by Gaussian mixtures. All methods differ only in the metric used
for computing the distance between marginal distributions and most of them
except DANN use a Wassertein distance. The difference essentially relies on
the reweighting strategy of the source samples. For all models, learning rate
and the hyperparameter λ in Equation 3 have been chosen based on a reverse
cross-validation strategy. The metric that we have used for comparison is the
balanced accuracy (the average recall obtained on each class) which is better
suited for imbalanced problems (Brodersen et al., 2010). All presented results
have been obtained as averages over 20 runs.

6.2 Toy dataset

The toy dataset is a 3-class problem in which class-conditional probabilities
are Gaussian distributions. For the source distribution, we fix the mean and
the covariance matrix of each of the three Gaussians and for the target, we
simply shift the means (by a fixed translation). We have carried out two sets
of experiments where we have fixed the shift and modified the label proportion
imbalance and another one with fixed imbalance and increasing shift. For space
reasons, we have deported to the supplementary the results of the latter. Figure
2 show how models perform for varying imbalance and fixed shift. The plots
nicely show what we expect. DANN performs worse as the imbalance increases.
WDβ works well for all balancing but its parameter β needs to increase with the
imbalance level. Because of the shift in class-conditional probabilities, IW-WD is
not able to properly estimate the importance weights and fails. Our approaches
are adaptive to the imbalance and perform very well over a large range for both
a low-noise and mid-noise setting (examples of how the Gaussians are mixed
are provided in the supplementary material). For the hardest problem (most-
right panel), all models have difficulties and achieve only a balanced accuracy
of 0.67 over some range of imbalance. Note that for this low-dimension toy
problem, as expected, the approach GMM and OT-based matching achieves the
best performance as reported in the supplementary material.

6.3 Digits, VisDA and Office

We present some UDA experiments on computer vision datasets (Peng et al.,
2017; Venkateswara et al., 2017), with different imbalanced settings. Details of
problem configurations as well as model architecture and training procedure can
be found in the appendix.

Our first result provides an illustration in Figure 4 of the latent representa-
tion we obtain for the VisDA problem after training on the source domain only
and after convergence of the different DA algorithms. We first note that for this
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problem, the assumptions for correct matching seem to hold and this leads to
very good visual matching of class-conditionals for MARS.

Table 1 reports the averaged balanced accuracy achieved by the different
models for only a fairly chosen subset of problems. The full table is in the
supplementary. Results presented here are not comparable to results available
in the literature as they mostly consider covariate shift DA (hence with bal-
anced proportions). For these subsets of problems, our approaches yield the
best average ranking. They perform better than competitors except on the
MNIST-MNISTM problems where the change in distribution might violate our
assumptions. Figure 3 presents some quantitative results label proportion esti-
mation in the target domain between our method and IW-WD. We show that
MARSc provides better estimation than this competitor 12 out of 16 experi-
ments. As the key issue in generalized target shift problem is the ability to
estimate accurately the importance weight or the target label proportion, we
believe that the learnt latent representation fairly satisfies our OT hypothesis
leading to good performance.

7 Conclusion

The paper proposed a strategy for handling generalized target shift in domain
adaptation. It builds upon the simple idea that if the target label propor-
tion where known, then reweighting class-conditional probabilities in the source
domain is sufficient for designing a distribution discrepancy that takes into ac-
count those shifts. In practice, our algorithm estimates the label proportion
using Gaussian Mixture models or agglomerative clustering and then matches
source and target class-conditional components for allocating the label propor-
tion estimations. Resulting label proportion is then plugged into an weighted
Wasserstein distance. When used for adversarial domain adaptation, we show
that our approach outperforms competitors and is able to adapt to imbalance
in target domains.

Acknowledgments

This work benefited from the support of the project OATMIL ANR-17-CE23-
0012 of the French, LEAUDS ANR-18-CE23, and was performed using comput-
ing resources of CRIANN (Normandy, France).

References

Alaux, J., Grave, E., Cuturi, M., and Joulin, A. Unsupervised hyper-alignment
for multilingual word embeddings. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
2019. URL https://openreview.net/forum?id=HJe62s09tX.

14

https://openreview.net/forum?id=HJe62s09tX


Table 1: Table of averaged balanced accuracy for the compared models and
different domain adaptation problems and label proportion imbalance settings.
Reported in bold are the best performances as well as other methods which
achieve performance that are statistically similar according to a Wilcoxon sign-
rank test with p = 0.01. Last lines present the summary of 34 experiments.
#Win includes the statistical ties.

Setting Source DANN WDβ=0 WDβ=1 WDβ=2 WDβ=3 WDβ=4 IW-WD MARSg MARSc

MNIST-USPS 10 modes

Balanced 76.89±3.7 79.74±3.5 93.71±0.7 74.27±4.3 51.33±4.0 76.61±3.3 71.90±5.7 95.28±0.4 95.61±0.7 95.64±1.0
Mid 80.41±3.1 78.65±3.0 94.30±0.7 75.36±3.4 55.55±4.3 78.98±3.1 72.32±4.2 95.60±0.5 89.70±2.3 90.39±2.6
High 78.13±4.9 81.79±4.0 93.86±1.1 87.44±1.7 83.83±5.2 85.65±2.5 83.65±3.0 94.08±1.0 88.30±1.5 89.65±2.3

USPS-MNIST 10 modes

Balanced 77.04±2.6 80.49±2.2 73.35±2.8 66.70±2.9 49.86±2.8 55.83±2.9 52.12±3.5 80.52±2.2 84.59±1.7 85.50±2.1
Mid 79.54±2.8 78.88±1.8 75.85±1.6 63.33±2.3 53.22±2.8 47.20±2.4 48.29±2.9 78.36±3.5 79.73±3.6 78.49±2.5
High 78.48±2.4 77.79±2.0 76.14±2.7 63.00±3.3 57.56±4.8 51.19±4.4 49.31±3.3 71.53±4.7 75.62±1.8 77.14±2.4

MNIST-MNISTM 10 modes

Setting 1 58.34±1.3 61.22±1.1 57.44±1.7 50.20±4.4 47.01±2.0 57.85±1.1 55.95±1.3 63.10±3.1 58.08±2.3 56.58±4.6
Setting 2 59.94±1.1 61.09±1.0 58.08±1.4 53.39±3.5 48.61±2.4 59.74±0.7 58.14±0.8 65.03±3.5 57.69±2.3 55.64±2.1
Setting 3 58.14±1.2 60.39±1.4 57.68±1.2 47.72±4.9 42.15±7.3 57.09±1.0 53.52±1.1 52.46±14.8 53.68±7.2 53.72±3.3

VisdDA 3 modes

setting 1 79.28±4.3 78.83±9.1 91.83±0.7 73.78±2.0 61.65±2.2 65.62±2.7 58.58±2.6 94.11±0.6 92.47±1.2 92.13±1.8
setting 4 80.15±5.3 75.46±9.3 72.75±1.2 86.86±7.5 86.82±1.2 80.16±6.9 75.71±2.0 85.88±5.7 87.69±3.0 91.29±4.8
setting 2 81.47±3.5 68.46±14.7 68.81±1.3 84.45±1.2 93.15±0.4 73.65±14.2 60.67±0.9 78.73±10.8 84.04±4.3 91.80±3.4
setting 3 78.35±3.2 58.93±15.9 64.13±1.9 79.17±0.8 77.12±10.3 89.93±0.5 94.38±0.3 77.96±9.3 75.68±4.1 73.81±13.2
setting 5 83.52±3.5 80.83±14.5 63.82±0.6 73.70±7.3 50.91±1.1 76.52±6.7 59.28±1.0 90.40±3.6 89.01±0.9 89.03±3.5
setting 6 80.84±4.2 54.76±19.8 45.27±2.4 63.70±5.1 67.05±6.1 42.86±10.8 62.21±1.4 94.36±1.0 93.70±0.4 93.86±1.0
setting 7 79.22±3.7 42.94±2.5 57.51±1.5 55.39±2.0 50.22±4.3 43.66±8.3 62.47±0.8 88.52±4.9 78.56±3.2 82.33±7.5

VisdDA 12 modes

setting 1 41.90±1.5 52.79±2.1 45.81±4.3 44.23±3.0 35.45±4.6 40.96±3.0 37.59±3.4 50.35±2.3 53.31±0.9 55.05±1.6
setting 2 41.75±1.5 50.82±1.6 45.72±8.9 40.49±4.8 36.21±5.0 36.12±4.6 31.86±5.7 48.59±1.8 53.09±1.6 55.33±1.6
setting 3 40.64±4.3 49.17±1.3 47.12±1.6 42.10±3.0 36.32±4.4 37.26±3.5 34.96±5.4 46.59±1.3 50.78±1.6 52.08±1.2

Office 31

A - D 73.73±1.4 74.26±1.8 77.22±0.7 65.10±2.0 62.65±2.6 71.47±1.2 63.89±1.1 75.74±1.6 76.07±0.9 78.20±1.3
D - W 83.64±1.1 81.89±1.5 82.61±0.6 83.53±0.8 82.80±0.7 80.10±0.5 87.09±0.9 78.93±1.5 86.32±0.6 86.20±0.8
W - A 54.05±0.9 52.16±1.0 48.94±0.4 56.81±0.4 53.02±0.5 58.83±0.4 54.93±0.5 52.23±0.7 60.68±0.8 55.18±0.8
W - D 92.76±0.9 87.64±1.4 95.07±0.3 93.13±0.5 87.60±0.9 94.69±0.6 91.18±0.6 97.04±0.9 95.14±0.8 93.80±0.6
D - A 52.51±0.9 48.06±1.2 49.78±0.4 48.75±0.5 50.13±0.4 50.28±0.7 50.75±0.5 41.39±1.8 54.65±0.9 54.95±0.9
A - W 67.45±1.5 70.15±1.0 67.07±0.6 60.62±2.1 52.92±1.4 63.98±1.3 59.73±0.8 68.76±1.6 73.09±1.5 71.90±1.2

Office Home

Art - Clip 37.66±0.7 36.85±0.6 33.42±1.2 31.43±1.6 27.13±1.6 31.63±5.2 29.30±6.6 37.65±0.6 37.58±0.5 38.65±0.5
Art - Product 49.72±0.9 49.98±0.9 39.43±3.6 38.82±2.3 35.05±2.3 35.09±3.4 32.85±3.6 48.98±0.3 55.27±0.7 52.18±0.4
Art - Real 58.22±1.0 53.68±0.5 51.09±2.3 50.35±1.8 46.40±2.4 51.52±4.5 45.34±11.0 57.74±0.7 63.88±0.5 58.75±0.7
Clip - Art 35.29±1.4 35.70±1.5 28.92±2.9 23.13±2.0 18.37±1.5 21.95±3.1 20.44±2.3 28.74±1.2 41.15±0.6 40.73±0.8
Clip - Product 51.94±1.3 52.06±0.8 39.17±7.9 39.26±2.6 34.73±1.9 39.58±2.8 39.46±2.9 34.46±2.1 51.69±0.5 52.12±0.5
Clip - Real 50.65±1.2 51.42±1.0 43.24±2.2 40.06±2.1 32.71±1.4 39.22±2.4 35.78±2.8 35.72±1.1 53.97±0.3 56.63±0.5
Product - Art 39.59±1.6 39.47±1.5 39.17±1.0 36.11±1.0 38.77±1.1 39.50±0.6 38.24±0.6 33.95±1.4 37.77±1.1 39.31±1.3
Product - Clip 32.71±0.9 37.18±1.0 33.82±0.5 28.38±0.7 28.40±0.6 29.72±0.5 31.76±0.8 24.89±1.0 30.86±0.8 29.25±0.9
Product - Real 62.12±1.3 62.52±1.2 62.56±0.7 58.09±0.5 57.58±0.6 59.33±0.6 57.11±0.8 59.22±0.9 60.48±0.6 62.20±0.7
Real - Product 68.30±1.0 70.39±0.8 70.19±0.5 61.72±0.8 63.40±0.9 61.51±1.0 65.45±0.6 64.47±1.5 64.79±3.6 66.49±1.1
Real - Art 40.25±0.9 41.31±1.0 39.16±0.7 33.46±1.3 31.61±1.5 36.90±0.9 36.14±0.9 36.93±1.9 39.90±1.4 39.17±1.6
Real - Clip 42.74±1.1 40.86±1.0 40.42±0.5 35.59±0.8 34.90±0.9 40.42±0.5 35.64±0.8 35.60±2.0 38.69±2.1 38.82±2.5

#Wins (/34) 7 9 5 0 1 0 2 9 12 21
Aver. Rank 4.16 4.73 5.32 6.97 8.38 6.59 7.57 4.95 3.38 2.95
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Figure 1: Example of geometrical arrangments of the source and target class-
conditional distributions that allows correct and incorrect matching of classes
by optimal transport of empirical means (assuming correct estimation of these
means). Blue lines denote the matching. (top-left) In this setting, the dis-
placements of each class-conditionals is so that for each class i ‖mi

S −mi
T ‖2 ≤

‖mi
S−mj

T ‖2, for all j. We are thus in the first example that we gave as satisfy-
ing Proposition 1. (top-right) Class-conditionals have been displaced such that
the “nearness” hypothesis is not respected anymore. However, target class-
conditional distributions are obtained by a linear Monge map of their source
counterparts. This ensures that optimal transport allows their matchings (based
on their means). (middle) We have illustrated two other examples of distribu-
tion arrangments that allow class matching. (bottom) Two examples that break
our assumption. In both cases, one target class-conditional is “near” another
source class, without the global displacements of all target class-conditionals
being uniform in direction.
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Figure 2: Performance of the compared algorithms for three different covari-
ance matrices of the Gaussians composing the toy dataset with respect to the
imbalance. The x-axis is given with respect to the percentage of majority class
which is the class 1. (left) Low-error setting. (middle) mid-error setting. (right)
high-error setting. Example of the source and target samples for the different
cases are provided in the supplementary material.
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Figure 3: Examples of `1 norm error of estimated label proportion. We have
reported the performance of our two methods (MARSg and MARSc) as well as
the performance of IW-WD. The three panels are related to the (left) VisDA-3,
(middle) VisDA-12, (right) Office 31 and the different experimental imbalance
settings (see Table 3). We have also reported, with a ‘*’ on top, among the three
approaches, the best performing one in term of balanced accuracy. We note that
MARSc provides better estimation than IW-WD on 12 out of 16 experiments.
Note also the correlation between better pT estimation and accuracy.
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Figure 4: t-sne embeddings of the target sample for the VisDA-3 problem and
imbalance setting 2 (pS = [0.4, 0.2, 0.4] and pT = [0.2, 0.6, 0.2]). The columns
depict the embeddings obtained (left) after training on the source data with-
out adaptation for about 10 iterations, which is sufficient for 0 training error.
(right) after adaptation by minimizing the appropriate discrepancy loss between
marginal distributions. From top to bottom, we have : (first-row) DANN,
(second-row) WDβ=1, (third-row), IW-WD (last row) MARSc. From the right
column, we note how DANN and WDβ=1 struggle in aligning the class condi-
tionals, especially those of Class 1, which is the class that varies the most in
term of label proportion. IW-WD manages to aligns the classes “0” and “2”
but is not able to correctly match the class “1”. Instead, our MARSc approach
achieves high performance and correctly aligns the class conditionals, although
some few examples seem to be mis-classified. Importantly, we can remark from
the left column that for this example, before alignment, the embeddings seem
to satisfy our Proposition 1 hypothesis. At the contrary, the assumption needed
for correctly estimating pT for IW-WD is not satisfied, justifying thus the good
and poor performance of those models.
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Supplementary material for
Match and Reweight for Generalized Target

Shift

This supplementary material presents some details of the theoretical and algo-
rithmic aspects of the work as well as as some additional results. They are listed
as below.

1. Theoretical details and proofs

2. Dataset details and architecture details are given in Section 9.1 and 9.2

3. Figure 5 presents some samples of the 3-class toy data set for different
configurations of covariance matrices making the problem easy, of mid-
difficulty or difficult.

4. Figure 6 exhibits the performances of the compared algorithms depending
on the shift of the class-conditional distributions.

5. Figure 7 shows for the imbalanced toy problem, the results obtained by
all competitors including a GMM.

6. Table 2 shows the performance of Source only and a simple GMM+OT
on a Visda 3-class problem.

7. Table 3 depicts the different configurations of the dataset we used in our
experiments

8 Theoretical and algorithmic details

8.1 Lemma 1 and its proof

Lemma 1. For all pyT , pyS and for any continuous class-conditional density
distribution pkS and pkT such that for all z and k, we have pS(z|y = k) > 0 and
pS(y = k) > 0. the following inequality holds.

sup
k,z

[w(z)Sk(z)] ≥ 1

with Sk(z) =
pgT (z|y=k)

pgS(z|y=k)
and w(z) =

py=k
T

py=k
S

, if z is of class k.

Proof. Let first show that for any k the ratio supz
pkT
pkS
≥ 1. Suppose that there

does not exist a z such that
pkT
pkS
≥ 1. This means that : ∀z pkT < pkS . By

integrating those positive and continuous functions on their domains lead to the
contradiction that the integral of one of them is not equal to 1. Hence, there

must exists a z such that
pkT
pkS
≥ 1. Hence, we indeed have ratio supz

pkT
pkS
≥ 1.
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Using a similar reasoning, we can show that supk
py=k
T

py=k
S

≥ 1. For a sake of

completeness, we provide it here. Assume that ∀k, py=k
T < py=k

S . We thus

have
∑
k p

y=k
T <

∑
k p

y=k
S . Since noth sums should be equal to 1 leads to a

contradiction.
By exploiting these two inequalities, we have :

sup
k,z

[w(z)Sk(z)] = sup
k

[
w(z) sup

z
Sk(z)

]
≥ sup

k
w(z) ≥ 1

8.2 Theorem 1 and its proof

Theorem 1. Under the assumption of Lemma 1, and assuming that any func-
tion h ∈ H is K-Lipschitz and g is a continuous function then for every function
h and g, we have

εT (h◦g, f) ≤ εS(h◦g, f)+2K·WD1(pgS , p
g
T )+

[
1 + sup

k,z
w(z)Sk(z))

]
εS(h?◦g, f)+εzT (fgS , f

g
T )

where Sk(z) and w(z) are as defined in Lemma 1, h? = arg minh∈H εS(h ◦ g; f)
and εzT (fgS , f

g
T ) = Ez∼pzT [|fgT (z)− fgS(z)|]

Proof. At first, let us remind the following result due to Shen et al. (2018).
Given two probability distributions pgS and pgT , we have

εzS(h, h′)− εzT (h, h′) ≤ 2K ·WD1(pgS , p
g
T )

for every hypothesis h,h′ in H. Then, we have the following bound for the
target error

εT (h ◦ g, f) ≤ εT (h ◦ g, h? ◦ g) + εT (h? ◦ g, f) (5)

≤ εT (h ◦ g, h? ◦ g) + εS(h ◦ g, h? ◦ g)− εS(h ◦ g, h? ◦ g) + εT (h? ◦ g, f)
(6)

≤ εS(h ◦ g, h? ◦ g) + εT (h? ◦ g, f) + 2K ·WD1(pgS , p
g
T ) (7)

= εzS(h, h?) + εzT (h?, fgT ) + 2K ·WD1(pgS , p
g
T ) (8)

≤ εzS(h, fgS) + εzS(h?, fgS) + εzT (h?, fgT ) + 2K ·WD1(pgS , p
g
T ) (9)

≤ εzS(h, fgS) + εzS(h?, fgS) + εzT (h?, fgS) + εzT (fgS , f
g
T ) + 2K ·WD1(pgS , p

g
T )

(10)

where the lines (5), (9), (10) have been obtained using triangle inequality, Line
(7) by using εU (h ◦ g, h? ◦ g) = εzU (h, h?) and by applying Shen’s et al. above
inequality, Line (8) by using εU (h ◦ g, f) = εzU (h, fgU ). Now, let us analyze the
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term εzS(h?, fgS)+εzT (h?, fgS). Denote as rS(z) = |h?(z)−fgS(z)|. Hence, we have

εzS(h?, fgS) + εzT (h?, fgS) =

∫
rS(z)[pgS(z) + pgT (z)]dz (11)

=
∑
k

pS(y = k)

∫
rS(z)pgS(z|y = k)

[
1 +

pT (y = k)

pS(y = k)
Sk(z)

]
dz

(12)

≤

(
1 + sup

k,z
[w(z)Sk(z)]

)
εzS(h?, fgS) (13)

where Line (12) has been obtained by expanding marginal distributions. Merg-
ing the last inequality into Equation (10) concludes the proof.

8.3 Proposition 1 and its proof

Proposition 1. Denote as ν = 1
C

∑C
j=1 δpjS

and µ = 1
C

∑C
j=1 δpjT

, represent-

ing respectively the class-conditional probabilities in source and target domain.
Given D a distance over probability distributions, Assume that for any per-
mutation σ of C elements, the following assumption, known as the D-cyclical
monotonicity relation, holds∑

j

D(pjS , p
j
T ) ≤

∑
j

D(pjS , p
σ(j)
T )

then solving the optimal transport problem between ν and µ as defined in equation
(2) using D as the ground cost matches correctly class-conditional probabilities.

Proof. The solution P∗ of the OT problem lies on an extremal point of ΠC .
Birkhoff’s theorem Birkhoff (1946) states that the set of extremal points of ΠC

is the set of permutation matrices so that there exists an optimal solution of
the form σ∗ : [1, · · · , C]→ [1, · · · , C]. The support of P∗ is D-cyclically mono-
tone (Ambrosio & Gigli, 2013; Santambrogio, 2015) (Theorem 1.38), meaning

that
∑C
j D(pjS , p

σ∗(j)
T ) ≤

∑C
j D(pjS , p

σ(j)
T ),∀σ 6= σ∗. Then, by hypothesis, σ∗ can

be identified to the identity permutation, and solving the optimal assignment
problem matches correctly class-conditional probabilities.

8.4 Proposition 2 and its proof

Proposition 2. Denote as γ the optimal coupling plan for distributions ν and µ
with balanced class-conditionals such that ν = 1

C

∑C
j=1 δpjS

and µ = 1
C

∑C
j=1 δpjT

under assumptions given in Proposition 1. Assume that the classes are ordered
so that we have γ = 1

C diag(1) then γ′ = diag(a) is also optimal for the trans-

portation problem with marginals ν′ =
∑C
j=1 ajδpjS

and µ′ =
∑C
j=1 ajδpjT

, with

aj > 0,∀j. In addition, if the Wasserstein distance between ν′ and µ′ is 0, it
implies that the distance between class-conditionals are all 0.
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Proof. By assumption and without loss of generality, the class-conditionals are
arranged so that γ = 1

C diag(1). Because the weights in the marginals are not
uniform anymore, γ is not a feasible solution for the OT problem with ν′ and µ′

but γ′ = diag(a) is. Let us now show that any feasible non-diagonal plan Γ has
higher cost than γ′ and thus is not optimal. At first, consider any permutation
σ of C elements and its corresponding permutation matrix Pσ, because γ =
1
C diag(1) is optimal, the cyclical monotonicity relation

∑
iDi,i ≤

∑
iDi,σ(i)

holds true ∀σ. Starting from γ′ = diag(a), any direction ∆σ = −I + Pσ is a
feasible direction (it does not violate the marginal constraints) and due to the
cyclical monotonicity, any move in this direction will increase the cost. Since
any non-diagonal γz ∈ Π(a,a) can be reached with a sum of displacements ∆σ

(property of the Birkhoff polytope) it means that the transport cost induced by
γz will always be greater or equal to the cost for the diagonal γ′ implying that
γ′ is the solution of the OT problem with marginals a.
As a corollary, it is straightforward to show that W (ν′, µ′) =

∑C
i=1Di,iai =

0 =⇒ Di,i = 0 as ai > 0 by hypothesis.

9 Experimental Results

9.1 Dataset details

We have considered 4 family of domain adaptation problems based on the digits,
Visda, Office-31 and Office-Home dataset. For all these datasets, we have not
considered the natural train/test number of examples, in order to be able to
build different label distributions at constant number of examples (suppose one
class has at most 800 examples, if we want that class to represent 80% of the
samples, then we are limited to 1000 samples).

For the digits problem, We have used the MNIST, USPS and the MNITSM
datasets. we have learned the feature extractor from scratch and considered
the following train-test number of examples setting. For MNIST-USPS, USPS-
MNIST and MNIST-MNISTM, we have respectively used 60000-3000, 7291-
10000, 10000-10000.

The VisDA 2017 problem is a 12-class classification problem with source and
target domain being simulated and real images. We have considerd two sets of
problem, a 3-class one (based on the classes aeroplane, horse and truck) and
the full 12-class problem.

The Office-31 is an object categorization problem involving 31 classes with
a total of 4652 samples. There exists 3 domains in the problem based on the
source of the images : Amazon (A), DSLR (D) and WebCam (W). We have
considered all possible pairwise source-target domains.

The Office-Home is another object categorization problem involving 65 classes
with a total of 15500 samples. There exists 4 domains in the problem based on
the source of the images : Art, Product, Clipart (Clip), Realworld (Real).

For the Visda and Office datasets, we have considered Imagenet pre-trained
ResNet-50 features and our feature extractor (which is a fully-connected feedfor-
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word networks) aims at adapting those features. We have used pre-trained fea-
tures freely available at https://github.com/jindongwang/transferlearning/
blob/master/data/dataset.md.

9.2 Architecture details

Toy The feature extractor is a 2 layer fully connected network with 200 units
and ReLU activation function. The classifier is also a 2 layer fully connected
network with same number of units and activation function. Discriminators
have 3 layers with same number of units.

Digits For the MNIST-USPS problem, the architecture of our feature extrac-
tor is composed of the two CNN layers with 32 and 20 filters of size 5 × 5 and
2-layer fully connected networks as discriminators with 100 and 10 units. The
feature extractor uses a ReLU activation function and a max pooling. For he
MNIST-MNISTM adaptation problem we have used the same feature extractor
network and discriminators as in Ganin & Lempitsky (2015).

VisDA For the VisDA dataset, we have considered pre-trained 2048 features
obtained from a ResNet-50 followed by 2 fully connected networks with 100
units and ReLU activations. The latent space is thus of dimension 100. Dis-
criminators and classifiers are also a 2 layer Fully connected networks with 100
and respectively 1 and ”number of class” units.

Office For the office datasets, we have considered pre-trained 2048 features
obtained from a ResNet-50 followed by two fully connected networks with output
of 100 and 50 units and ReLU activations. The latent space is thus of dimension
50. Discriminators and classifiers are also a 2 layer fully connected networks with
50 and respectively 1 and ”number of class” units.

For Digits and VisDA and Office applications, all models have been trained
using ADAM for 100 iterations with validated learning rate, while for the toy
problem, we have used a SGD.
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Figure 5: Examples of source and target domain examples. For each domain,
data are composed of three Gaussians defining each class. In the source domain,
classes are balanced whereas in the target domain, we have a ratio of 0.8, 0.1, 0.1.
The three configurations presented here vary in their covariance matrices. From
left to right, we have Gaussians that are larger and larger making them difficult
to classify. In the most right examples, the second class of the source domain and
the third one of the target domain are mixed. This region becomes indecidable
for our model as the source loss want to classify it as ”Class 2” while the
Wasserstein distance want to match it with ”Class 3” of the source domain.
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Figure 6: Performance of the compared algorithms in different label shift setting
and for increasing shift between means of class-conditionals. In source domain,
label distributions are uniform and shift occurs due to change only in the target
domain. (left) pT (y = 1) = 0.33, pT (y = 2) = 0.33, pT (y = 3) = 0.34. (middle)
pT (y = 1) = 0.5, pT (y = 2) = 0.2, pT (y = 3) = 0.2, (right) pT (y = 1) = 0.8,
pT (y = 2) = 0.1, pT (y = 3) = 0.1. For balanced problems, we note that
best methods are WDβ={0,1}, DANN and our approaches either using GMM or
clustering for estimating label proportion. As expected, a too heavy reweight-
ing yields to poor performance for WDβ={2,3,4}. Then for a mild imbalance,
WDβ={1,2} performs better than the other competitors while for higher imbal-
ance, WDβ={3,4} works better. For all settings, our methods are competitive
as they are adaptive to the imbalance through the estimation fo pT (y). The
IW-WD of Combes et al. (2020) performs well until the distance between class-
conditionals is too large. This is justified by theory as their estimator of the
ratio pT (y)/pS(y) is tailored for situations where class-conditionals are equal.
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Figure 7: Performance of the compared algorithms, including GMM+OT for
three different covariance matrices of the Gaussians composing the toy dataset
with respect to the imbalance. The shift between the class-conditionals has been
fixed and yields to samples similar to those presented in Figure 5. Our method
is referred as MARS. The x-axis is given with respect to the ratio of majority
class which is the class 1. (left) Low-error setting. (middle) mid-error setting.
(right) high-error setting. material. We note that this toy problem can be easily
solved using a GMM and a optimal transport-based label assignment. We can
also remark that again as soon as the class-conditionals do not match anymore,
the IW-WD of Combes et al. (2020) fails due to its inability to estimate correctly
the importance weight w. .

Table 2: Comparing Source-Only model and GMM+OT approach on the
VisDA-3-mode problems. We can note that for these problems where the latent
space is of dimension 100, the GMM+OT compares poorly to Source-Only. In
addition, we can note that there is very high variability in the performance.

Configuration Source GMM+OT
Setting 1 79.28±4.3 81.22±4.7
Setting 4 80.15±5.3 76.28±9.8
Setting 2 81.47±3.5 74.79±10.4
Setting 3 78.35±3.2 69.97±10.8
Setting 5 83.52± 3.5 76.95±10.4
Setting 6 80.84±4.2 72.86±10.2
Setting 7 79.22±3.7 69.48±9.8
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Table 3: Table of the dataset experimental settings. We have considered differ-
ent domain adaptation problems and different configurations of the label shift
in the source and target domain. For the digits and VisDA problem, we pro-
vide the ratio of samples of classes for each problem (e.g., for the third setting
of VisDA-3 problem, the second class accounts for the 70% of the samples in
target domain). For Office datasets, because of large amount of classes, we
have changed percent of samples of that class in the source or target (e.g., the
10-class in Office Home uses respectively 20% and 100% of its sample for the
source and target domain).

Configuration Proportion Source Proportion Target

MNIST-USPS balanced { 1
10
, · · · , 1

10
} { 1

10
, · · · , 1

10
}

MNIST-USPS mid { 1
10
, · · · , 1

10
} {0, · · · , 3, 6} = 0.02, {4, 5} = 0.02, {7, 8, 9} = 0.1

MNIST-USPS high { 1
10
, · · · , 1

10
} {0} = 0.3665, {1} = 0.3651, {2, · · · } = 0.0335

USPS-MNIST balanced { 1
10
, · · · , 1

10
} { 1

10
, · · · , 1

10
}

USPS-MNIST mid { 1
10
, · · · , 1

10
} {0, · · · , 3, 6} = 0.02, {4, 5} = 0.02, {7, 8, 9} = 0.1

USPS-MNIST high { 1
10
, · · · , 1

10
} {0} = 0.3665, {1} = 0.3651, {2, · · · } = 0.0335

MNIST-MNISTM (1) {0− 4} = 0.05, {5− 9} = 0.15 {0, · · · , 3, 6} = 0.02, {4, 5} = 0.02, {7, 8, 9} = 0.1
MNIST-MNISTM (2) {0− 2} = 0.26, {3− 9} = 0.03 {0− 6} = 0.03, {7− 9} = 0.26
MNIST-MNISTM (3) {0− 5} = 0.05, {6− 9} = 0.175 {0− 3} = 0.175, {4− 9} = 0.05

VisDA-3 (1) {0.33,0.33,0.34} {0.33,0.33,0.34}
VisDA-3 (2) {0.4,0.2,0.4} {0.2,0.6,0.2}
VisDA-3 (3) {0.4,0.2,0.4} {0.15,0.7,0.15}
VisDA-3 (4) {0.4,0.2,0.4} {0.1,0.8,0.1}
VisDA-3 (5) {0.6,0.2,0.2} {0.2,0.2,0.6}
VisDA-3 (6) {0.6,0.2,0.2} {0.15,0.2,0.65}
VisDA-3 (7) {0.6,0.2,0.2} {0.2,0.65,0.15}
VisDA-12 (1) { 1

12
, · · · , 1

12
} { 1

12
, · · · , 1

12
}

VisDA-12 (2) { 1
12
, · · · , 1

12
} {0− 3} = 0.15, {4− 11} = 0.05

VisDA-12 (3) { 1
12
, · · · , 1

12
} {0− 1} = 0.2, {2− 5} = 0.1, {6− 11} = 0.03

Office-31 {0− 15} : 30% {15− 31} : 80% {0− 15} : 80% {15− 31} : 30%
Office-Home {0− 32} : 20% {33− 65} : 100% {0− 32} : 100% {33− 65} : 20%
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