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Abstract

Gaussian smoothed sliced Wasserstein dis-
tance has been recently introduced for com-
paring probability distributions, while pre-
serving privacy on the data. It has been
shown, in applications such as domain adap-
tation, to provide performances similar to
its non-private (non-smoothed) counter-part.
However, the computational and statistical
properties of such a metric is not yet been
well-established. In this paper, we analyze
the theoretical properties of this distance as
well as those of generalized versions denoted
as Gaussian smoothed sliced divergences. We
show that smoothing and slicing preserve the
metric property and the weak topology. We
also provide results on the sample complex-
ity of such divergences. Since, the privacy
level depends on the amount of Gaussian
smoothing, we analyze the impact of this
parameter on the divergence. We support
our theoretical findings with empirical stud-
ies of Gaussian smoothed and sliced version
of Wassertein distance, Sinkhorn divergence
and maximum mean discrepancy (MMD).
In the context of privacy-preserving domain
adaptation, we confirm that those Gaussian
smoothed sliced Wasserstein and MMD di-
vergences perform very well while ensuring
data privacy.

1 Introduction

Divergences for comparing two distributions have been
shown to be important for achieving good perfor-
mances in the contexts of generative modeling [1, 27],
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domain adaptation [18, 5, 17], and in computer vi-
sion [3, 28] among many more applications [14, 24].
Examples of divergences that have been proven to
be useful for those tasks are maximum mean discrep-
ancy [11, 18, 29], Wasserstein distance [19, 12, 30] or
its variant the sliced Wasserstein distance (SWD) [2,
15, 21, 13].

Sliced Wasserstein distance has the advantage of be-
ing computationally efficient as it exploits a closed-
form solution for distributions with support on R,
by computing the expectation of one-dimensional ran-
dom projections of distributions in Rd. Owing to this
efficiency and the resulting scalability, this distance
has been successfully applied in several applications
ranging from generative models to domain adapta-
tion [16, 7, 31, 17] and its statistical property has been
well-studied [20].

A differentially private variant of sliced Wasserstein
distance has been recently introduced in [26], for com-
paring distributions in relation to sensitive applica-
tions in which training data can not be disclosed. Pri-
vacy through a so-called Gaussian mechanism is in-
duced by adding Gaussian noise to each 1D projection
of each distribution, leading to the so-called Gaussian-
smoothed sliced Wasserstein distance. This relation-
ship between Gaussian smoothing and privacy has also
been mentioned by Nietert et al. [22] as future work to
address, while they analyzed the structural and statis-
tical behavior of Gaussian smoothed Wasserstein dis-
tances.

However, up to now, theoretical properties of this
Gaussian smoothed sliced Wasserstein distance are not
well fully understood except for its metric proper-
ties [26]. In this work, we investigate those theoret-
ical properties and the one of more general Gaussian
smoothed sliced divergences. Indeed, given a base dis-
tance or divergence for distributions in Rd, we can
introduce its related Gaussian smoothed sliced diver-
gence. Specifically, the theoretical properties of inter-
est are the metric property and the underlying topol-
ogy. From a statistical point of view, we seek at under-
standing the relationship between the sample complex-



ity of the base divergence and its Gaussian smoothed
sliced version. Regarding privacy, the role of the Gaus-
sian smoothing is of primary importance as it induces
the privacy level achieved by the divergence. Hence,
we also provide an analysis on its impact with respect
to the standard deviation of the Gaussian noise. For
supporting our theoretical study, we provide some nu-
merical experiments on toy problem, and we also pro-
vide some numerical study on domain adaptation il-
lustrating how owing to the topology induced by our
metric, differential privacy comes almost for free (with-
out loss of performances) in this context.

The paper is organized as follows, after introducing
the notations and some background in Section 2, we
detail the topological properties of Gaussian smoothed
sliced divergence in Section 3.1 while the statistical
properties are established in Section 3.2. Experimental
analyses for supporting the theory and showcasing the
relevance of our divergences in a domain adaptation
situation are depicted in Section 4. Discussions on the
perspectives and limitations are in Section 5.

2 Preliminaries

For the reader’s convenience, we provide a brief sum-
mary of the standard notations and the definitions that
will be used throughout the paper.

Notations. For d ∈ N∗, let P(Rd) be the set of Borel
probability measures on Rd and Pp(Rd) ⊂ P(Rd),
those with finite moment of order p, i.e., Pp(Rd) ,
{µ ∈ P :

∫
‖x‖pdµ(x) < +∞}, where ‖ · ‖ is the Eu-

clidean norm and 〈·, ·〉 is the Euclidean inner-product.
For two probability distributions µ and ν, we denote
their convolution as µ ∗ ν ∈ P(Rd) and by definition,
we have (µ∗ν)(A) =

∫
x

∫
y

1A(x+y)dµ(x)dν(y), where

1A(·) is the indicator function over A. Given two in-
dependent random variables X ∼ µ and Y ∼ ν, we
remind that X + Y ∼ µ ∗ ν.

The d-dimensional unit-sphere is noted as Sd−1 , {θ ∈
Rd : ‖θ‖ = 1}. We denote by ud the uniform distribu-
tion on Sd−1 and we use δ(·) to denote the Kronecker
delta function. We note as Eµf the expectation of the
function f with respect to µ. Hence, the character-
istic function of a probability distribution µ ∈ P(Rd)
is ϕµ(t) = Eµ[eiX

>t]. Given this definition, similarly
to the Fourier transform, the characteristic function
of the convolution of two probability distributions has
the following form ϕν∗µ(t) = ϕν(t) · ϕµ(t).

Sliced Wasserstein Distance. We remind in this
paragraph several measures of similarity between two
distributions. The Wasserstein distance of order p ∈
[1,∞) between two measures in Pp(Rd) is given by the

relaxation of the optimal transport problem, and it is
defined as

W p
p (µ, ν) = inf

γ∈Π(µ,ν)

∫
Rd×Rd

‖x− x′‖pγ(x, x′)dxdx′

where Π(µ, ν) , {γ ∈ P(Rd × Rd)|π1#γ = µ, π2#γ =
ν} and π1, π2 are the marginal projectors of γ on each
of its coordinates. When d = 1, the Wasserstein dis-
tance can be computed in a closed-form owing to the
cumulative distributions of µ and ν [25]. Note that the
superscript in W p

p refers to the power p. In practice for
empirical distributions, the closed-form solution needs
just the sorting of samples, which makes it very effi-
cient. Due to this efficiency, efforts have been devoted
to derive a metric for high-dimensional distributions
based on 1D Wasserstein distance. The main idea is
to project high-dimensional probability distributions
onto a random 1-dimensional space and then to com-
pute the Wasserstein distance. That operation can be
theoretically formalized through the use of the Radon
transform, leading to the so-called sliced Wasserstein
distance [2, 15, 21, 13].

Definition 1. For any p ∈ [1,∞) and two measures
µ, ν ∈ Pp(Rd), the sliced Wasserstein distance (SWD)
reads as

SWDp
p(µ, ν) ,

∫
Sd−1

W p
p (Ruµ,Ruν)ud(u)du.

where Ru is the Radon transform of a probability dis-
tribution, namely Ruµ(·) =

∫
Rd µ(s)δ(· − s>u)ds.

In practice, the integral is approximated through
a Monte-Carlo simulation leading to a sum of 1D
Wasserstein distances over a fixed number of random
directions u.

Gaussian Smoothed Sliced Wasserstein Dis-
tance. Based on this definition of SWD, replacing
the Radon projected measures with their Gaussian-
smoothed counterpart leads to the following definition:

Definition 2. The σ-Gaussian smoothed p-Sliced
Wasserstein distance between probability distributions
µ and ν in Pp(Rd) is

GσSWDp
p(µ, ν) ,

∫
Sd−1

W p
p (Ruµ∗Nσ,Ruν∗Nσ)ud(u)du.

It is important to note here that the smoothing (convo-
lution) operation occurs after projection onto the one-
dimensional space. Hence, assuming X ∼ µ, Y ∼ ν in
the integral, for a given u, we compute the 1D Wasser-
stein distance between the probability laws of u>X+Z
and u>Y +Z ′ with Z,Z ′ ∼ Nσ being independent ran-
dom variables. The metric properties of GσSWDp

p for
p ≥ 1, of this Gaussian smoothed sliced Wasserstein



distance have been discussed in a recent work [26].
This latter work has also shown, in the context of
differential privacy, the importance of convolving the
Radon projected distribution with a Gaussian instead
of computing the sliced Wasserstein distance of the
original distribution smoothed with a d-dimensional
Gaussian µ ∗ Nσ.

Gaussian Smoothed Sliced Divergence. The
idea of slicing high-dimensional distributions before
feeding them to a divergence between probability dis-
tributions can be extended to other distance than
Wasserstein distance. Those sliced divergences have
been studied by [20]. In a similar way, we can define
a Gaussian smoothed sliced divergence, given a diver-
gence D : P(Rd)× P(Rd)→ R+ for d ≥ 1 as:

Definition 3. The σ-Gaussian smoothed p-Sliced Di-
vergence between probability distributions µ and ν in
Pp(Rd) associated to the divergence D , DR, p ≥ 1 is

GσSDp(µ, ν) ,
∫
Sd−1

Dp(Ruµ∗Nσ,Ruν∗Nσ)ud(u)du.

where the superscript p refers to a power.

Typical relevant divergence is the maximum mean
discrepancy (MMD) [11] or the Sinkhorn divergence
[10, 24]. In Section 4, we report empirical findings
based on these divergences as well as on the Wasser-
stein distance.

3 Theoretical Properties

In this section, we will analyze the properties of the
Gaussian smoothed sliced divergence, in term of topo-
logical and statistical properties and the influence of
the Gaussian smoothing parameter σ on the distance.

3.1 Topology

It has already been shown in [26] that the Gaussian
smoothed sliced Wasserstein is a metric on P(Rd). In
the next, we extend these results to any divergence
D(·, ·) under some assumptions.

Theorem 1. For any p ∈ [1,∞) and σ > 0, the fol-
lowing properties hold:

1. if D(·, ·) is non-negative (or symmetric), then
GσSDp(·, ·) is non-negative (or symmetric);

2. if the base divergence D(·, ·) satisfies the identity
of indiscernibles, for µ′, ν′ ∈ P(R), D(µ′, ν′) = 0
if and only if µ′ = ν′, then this identity also holds
for GσSDp(·, ·) for any µ, ν ∈ P(Rd);

3. if the D(·, ·) satisfies the triangle inequality then
its Gaussian smoothed sliced version GσSDp(·, ·)
satisfies the triangle inequality.

The above theorem shows that under mild hypotheses
over the base divergence D, as being a metric for in-
stance, the metric property of its Gaussian smoothed
sliced version naturally derives. As exposed in the
appendix, the more involved property to prove is the
identity of indiscernibles.

Now, we establish under which conditions on the di-
vergence D, the convergence of a sequence in GσSD

p

implies weak convergence in P(Rd).
Theorem 2. Let σ ≥ 0, p ∈ [1,∞), µ ∈ Pp(Rd),
the sequence of distributions {µk ∈ Pp(Rd)}k≥1. As-
sume that the divergence D metricizes the weak topol-
ogy. Then, limk→∞GσSDp(µk, µ) = 0 if and only if
{µk}k converges weakly to µ i.e., if for any f in the
set of bounded and continuous functions, µk → µ if∫
Rd f(x)dµk(x)→

∫
Rd f(x)dµ(x).

Proof. By using results from [20], we know that if D
metricizes the weak topology for P(R) then the weak
convergence in P(R) is equivalent to the convergence
under D. Hence, we have

GσSD
p(µk, µ)→ 0⇔ µk ∗ Nσ → µ ∗ Nσ

then, using the convolution property of characteristic
function gives

ϕµk(t)ϕNσ (t)→ ϕµ(t)ϕNσ (t) ∀t.

This means that for all t, ϕµk(t) → ϕµ(t) which con-
cludes the proof, owing to the one-to-one correspon-
dence between characteristic functions.

3.2 Statistical properties

The next theoretical question we are interested in is
about the error we made when the true distribution µ
is approximated by its empirical distribution µ̂. Such
a case is common in practical applications where only
(high-dimensional) empirical samples are at disposal.
Specifically, we are interested in quantifying two key
properties of empirical Gaussian smoothed divergence:
(i) the convergence of GσSD

p(µ̂n, ν̂n) to GσSD
p(µ, ν)

(ii) the convergence of ĜσSDp(µ, ν) to GσSD
p(µ, ν),

i.e., when approximating the expectation over the ran-
dom projection with sample mean.

3.2.1 Sample complexity

Herein, our goal is to quantify the error made when ap-
proximating GσSD

p(µ, ν) with GσSD
p(µ̂n, ν̂n), where

µ̂n, ν̂n are the empirical counterparts of µ, ν defined



over n samples. More precisely, we are interested
in establishing an order of the convergence rate of
GσSD

p(µ̂n, ν̂n) towards GσSD
p(µ, ν), according to

the number of samples n. This rate stands for the so-
called sample complexity.

Theorem 3. Fix p ∈ [1,∞) and assume that for any
µ′ ∈ P(R) with empirical measure µ̂

′

n, E[Dp(µ̂
′

n, µ
′)] ≤

αn(p). Then, for any µ ∈ P(Rd) with empirical mea-
sure µ̂n,

E[GσSD
p(µ̂n, µ)] ≤ αn(p).

Additionally, if Dp is a pseudo-metric (non-negative,
symmetric with triangle inequality), then

E[|GσSDp(µ̂n, ν̂n)−GσSDp(µ, ν)|] ≤ 2αn(p).

Proof. We have

E[GσSD
p(µ̂n, µ)]

= E

[ ∫
Sd−1

Dp(Ruµ̂n ∗ Nσ,Ruµ ∗ Nσ)ud(u)du

]
≤
∫
Sd−1

E
[
Dp(Ruµ̂n ∗ Nσ,Ruµ ∗ Nσ)ud(u)du

]
≤
∫
Sd−1

αn(p)ud(u)du = αn(p).

The triangle inequality entails that, GσSD
p(µ̂n, ν̂n) ≤

GσSD
p(µ̂n, µ) +GσSD

p(µ, ν) +GσSD
p(ν, ν̂n), which

entails, by taking expectation with respect to µ̂n, ν̂n,

E
[
|GσSDp(µ̂n, ν̂n)−GσSDp(µ, ν)|

]
≤ E

[
GσSD

p(µ̂n, µ)
]

+ E
[
GσSD

p(ν, ν̂n)
]

≤ E
[
GσSD

p(µ̂n, µ)
]

+ E
[
GσSD

p(ν̂n, ν)
]

≤ 2αn(p),

which completes the proof.

Remark 1. Given any base divergence Dp, Theorem 3
shows that the sample complexity of GσSD

p is propor-
tional to the one dimensional sample complexity of Dp.

Next, we focus on the sample complexity for the
special case of Gaussian smoothed sliced Wasserstein
distance. We also provide the convergence rate of
GσSWDp(µ̂n, ν̂n) towards GσSWDp(µ, ν).

Proposition 1. For any p, q ∈ [1,∞) such that q > p,
consider µ, ν ∈ Pq(Rd) with its empirical measure µ̂n.
Then, the following holds

E[|GσSWDp(µ̂n, ν̂n)−GσSWDp(µ, ν)|] ≤ αn(p, q, σ)

where

αn(p, q, σ)

= 2Cp,q ×

{
2p(q−1)/q(Mq(µ, ν) +Mq(Nσ))p/q1q∈2N∗ ,

2p(q−1)/qMq(µ, ν))p/q1q∈2N+1,

×


n−1/21q>2p,

n−1/2 log(n)1q=2p

n−(q−p)/q1q∈(p,2p)

and where Mq(µ, ν) = Mq(µ) +Mq(ν), Cp,q is a posi-
tive constant depending only p, q, and Mq(Nσ) stands
for the q-th moment of Nσ, that is

Mq(Nσ))1q∈2N∗ =
(2q)!

2qq!
σ2q = 1 · 2 · 3 · · · (2q − 1)σ2q.

The latter theoretical results show that empirical
Gaussian smoothed Wasserstein distance converges at
a rate of order n−1/2 in the best scenario. It is worth
also noting that the sample complexity depends on
the amount of smoothing through the moment of the
Gaussian noise : the larger the amount of smoothing,
the worse is the constant of the complexity.

3.2.2 Projection complexity

To compute the Gaussian smoothed sliced divergence,
one may resort to a Monte Carlo scheme to numerically
approximate the integral in GσSD

p(µ, ν). Towards
this, let define the following sum:

ĜσSD
p
(µ, ν) =

1

L

L∑
l=1

Dp(Rul µ̂n ∗ Nσ,Rul ν̂n ∗ Nσ),

where ul is a random vector uniformly drawn from
Sd−1, for l = 1, . . . , L. Theorem 4 shows that for a
fixed dimension d, the root mean square error of Monte

Carlo approximation is of order O
(

1√
L

)
, which corre-

sponds to the projection complexity.

Theorem 4. Let µ, ν ∈ P(Rd) and fix p ∈ [1,∞).
Then, the error related to the Monte Carlo estimation
of GσSD

p is bounded as follows

E[|ĜσSD
p
(µ, ν)−GσSDp(µ, ν)|] ≤ A(p, σ)√

L
,

where A2(p, σ) =
∫
Sd−1

(
Dp(Ruµ ∗ Nσ,Ruν ∗ Nσ) −

ϑ̄p
)2

dud(u), with ϑ̄p =
∫
Sd−1 D

p(Ruµ ∗ Nσ,Ruν ∗
Nσ)dud(u).

The term A2(p, σ) corresponds to the variance of
Dp(Ruµ∗Nσ,Ruν∗Nσ) with respect to u ∼ ud drawn
according to the uniform distribution over the unit-
sphere Sd−1. It is worth to note that the precision



Figure 1: Measuring the divergence between two sets of samples in R50, of increasing size, randomly drawn
from N (0, I). We compare three sliced divergences and their Gaussian smoothed versions with a σ = 3. (left)
dimension has been set to d = 50. (right) sample complexity with different dimensions. This plot confirms that
the complexity is dimension-independent.

of the Monte Carlo scheme approximation depends on
the number of projections L and the variance of the
evaluations of the divergence Dp. The estimation error
decreases at the rate L−1/2 according to the number
of projections used to compute the smoothed sliced
divergence.

Remark 2. Given the above results, we can provide a
finer analysis of the Gaussian smoothed SWD sample
complexity. For any µ, ν ∈ Pq(Rd), the overall com-
plexity of the Gaussian smoothed sliced Wasserstein
distance is bounded by the sample and projection com-
plexities, that is,

complexity(GσSWDp(µ, ν)) = O
(
αn(p, q, σ)+

A(p, σ)√
L

)
.

If we consider the number of projections as L =
bnβc for some β ∈ (0, 1) then the overall complexity
complexity(GσSD

p(µ, ν)) = O(n−β/2). We further
mention that complexity is “interestingly” independent
of the dimension d.

3.3 Noise-level dependencies

When considered in sensitive applications requiring
privacy preserving, the parameter σ of the Gaussian
smoothing function Nσ may significantly influence the
attained privacy level. Hence, we provide theoretical
results analyzing the effect of the noise level σ on the
induced Gaussian smoothed sliced divergence.

Order relation. We first show that the noise level
tends to reduce the difference between two distribu-
tions as measured using GσSDp(µ, ν) provided the
base divergence D satisfies some mild assumptions.

Proposition 2. Let µ and ν two distributions in
P(Rd) and consider the noise levels σ1, σ2 such that

0 ≤ σ1 ≤ σ2 <∞. Assume that the base divergence D
satisfies

Dp(µ′ ∗ Nσ2
, ν′ ∗ Nσ2

) ≤ Dp(µ′ ∗ Nσ1
, ν′ ∗ Nσ1

),

for any µ′, ν′ ∈ P(R). Then,

Gσ2SDp(µ, ν) ≤ Gσ1SDp(µ, ν).

Proof. For all u ∈ Sd−1 we have Ruµ,Ruν ∈ P(R).
By application of the inequality of noise level satisfied
by Dp

p in one dimension we get

Dp(Ruµ∗Nσ2
,Ruν∗Nσ2

) ≤ Dp(Ruµ∗Nσ1
,Ruν∗Nσ1

).

Then, computing the expectation over the projections
u since the divergence is non-negative concludes the
proof.

Note that the assumption for the base divergence in-
equality holds for the Gaussian smoothed Wasserstein
distance [22]. While we conjecture that it holds also
for smoothed Sinkhorn and MMD, we leave the proofs
for future works.

Based on the property in Proposition 2, we can show
some specific properties of the metric with respect to
the noise level σ.

Proposition 3. GσSDp(µ, ν) is decreasing with re-
spect to σ and we have

lim
σ→0

GσSDp(µ, ν) = Dp(µ, ν).

Proof. The proof comes straightforwardly from Propo-
sition 2 by taking σ2 = 0 and letting σ1 → 0.

This property interestingly states that the GσSDp re-
covers the sliced divergence when the noise level van-
ishes. We end up this section by providing a rela-
tion between Gaussian smoothed sliced Wasserstein



Figure 2: Measuring the divergence between two sets
of samples drawn iid from the CIFAR10 dataset. We
compare three sliced divergences and their Gaussian
smoothed versions with a σ = 3.

distances under two noise levels. Proof of Proposition
4 is postponed to the appendix.

Proposition 4. Let 0 ≤ σ1 ≤ σ2 be two noise levels.
Then, one has

Gσ1
SWDp(µ, ν) ≤ 2p−1Gσ2

SWDp(µ, ν)

+
2πd/2

Γ(d/2)
23p/2(σ2

2 − σ2
1)2p,

where Γ : R→ R is the Gamma function expressed as
Γ(v) =

∫∞
0
tv−1e−tdt.

The above proposition allows to control the variation
of theGσSWD divergence with respects to the amount
of Gaussian smoothing.

Remark 3. All these properties hold for the popula-
tion case. When considering empirical approximation
of the true distribution, it may not hold due to the
impact of Nσ over the sample complexity.

4 Numerical Experiments

In this section, we report on a serie of experiments
that support the theoretical results established in the
previous section. We also highlight the usefulness of
the findings in a context of privacy- preserving domain
adaptation problem.

4.1 Supporting the theorical results

Sample complexity The first experiment (see Fig-
ure 1) analyzes the sample complexity of the different
Gaussian smoothed sliced divergences. It shows that
the sample complexity stays similar to the one of their
original and sliced counterparts up to a constant (see
Theorem 3). For this purpose, we have considered

Figure 3: Measuring the divergence between two sets
of samples in R50, one with mean 21d and the other
with mean s1d with increasing s. We compare three
sliced divergences and their Gaussian smoothed ver-
sion with a σ = 3.

Figure 4: Absolute difference between the approxi-
mated Monte-carlo approximation of all divergences
compared to the true one (evaluated with 10, 000 num-
ber of projections). The two sets of 500 samples in
R50 are randomly drawn from N (0, I). The Gaussian
smoothed divergences are parameterized with σ = 3.

samples in Rd randomly drawn from a Normal distri-
bution N (0, I). For the Sinkhorn divergence, the en-
tropy regularization has been set to 0.1 and for MMD,
we used a Gaussian kernel for which the bandwidth
has been set to the mean of all pairwise distances be-
tween samples. The number of projections has been
fixed to L = 50 and we perform 20 runs per exper-
iment. For the first study, the convergence rate has
been evaluated by increasing the samples number up
to 25,000 with fixed dimension d = 50. For the second
one, we vary both the dimension and the number of
samples.

Figure 1 shows the sample complexity of some sliced
divergences, respectively noted as SWD, SKD and
MMD for Sliced Wasserstein distance, Sinkhorn di-
vergence and Maximum Mean discrepancy) and their



Gaussian-smoothed version, named as GS SWD, GS
SKD and GS MMD. On the left plot, we can see that
all Gaussian smoothed divergences preserve the com-
plexity rate with just a slight to moderate overhead.
The worst difference is for Sinkhorn divergence, while
smoothed MMD almost comes for free in term of com-
plexity. From the right plot where sample complex-
ities for different dimensions d are given, we confirm
the finding that Gaussian smoothing keeps the inde-
pendence of the convergence rate to the dimension of
sliced divergences. We have also evaluated the sample
complexity for the CIFAR dataset by sampling sets of
increasing size. Results reported in Figure 2 confirms
the findings obtained from the toy dataset.

Identity of indescernibles The second experiment
aims at checking whether our divergences converge to-
wards a small value when the distributions to be com-
pared are the same. For this, we consider samples
from distributions µ and ν chosen as normal distribu-
tions with respectively mean 2×1d and s1d with vary-
ing s (noted as the displacement). Results are depicted
in Figure 3. We can see that all methods are able to at-
tain their minimum when s = 2. Interestingly, the gap
between the Gaussian smoothed and non-smoothed
divergences for Wasserstein and Sinkhorn is almost
indiscernible as the distance between distribution in-
creases.

Projection complexity We have also investigated
the impact of the number of projections when esti-
mating the distance between two sets of 500 samples
drawn from the same distribution, N (0, I). Figure 4
plots the approximation error between the true expec-
tation of the sliced divergences (computed for a num-
ber of L = 10, 000 projections) and its approximated
versions. We remark that, for all methods, the error
ranges within 10-fold when approximating with 50 pro-
jections and decreases with the number of projections.

Impact of the noise parameter. Since the Gaus-
sian smoothing parameter is key in a privacy preserv-
ing context, as it impacts on the level of privacy of the
Gaussian mechanism, we have analyzed its impact of
the smoothed sliced divergence. We have reproduced
the experiment for the sample complexity but with
different values of σ. The number of projections has
been set to 50. Figure 5 shows these sample complex-
ities. The first very interesting point to note is that
the smoothing parameter has almost no effect on the
MMD sample complexity. For the Gaussian smoothed
SWD and Sinkhorn divergences, instead, the smooth-
ing tends to increase the divergence at fixed number
of samples. Another interpretation is that to achieve a
given value of divergence, one needs more far samples

Figure 5: Measuring the divergence between two sets
of samples in R50 drawn from N (0, I). We plot the
sample complexity for different Gaussian smoothed di-
vergence at different level of noises.

when the smoothing is larger (i.e for getting a given di-
vergence value at σ = 5, one needs almost 10-fold more
samples for σ = 15). This overhead of samples needed
when smoothing increases is properly described, for
the Gaussian smoothed SWD in our Proposition 1, as
the sample complexity depends on the moments of the
Gaussian.

As for conclusion from these analyses, we highlight
that the Gaussian smoothed Sliced MMD seems to
present several strong benefits : its sample complex-
ity does not depend on the dimension and seems to
be the best one among the divergence we considered.
More interestingly, it is not impacted by the amount
of Gaussian smoothing and thus not impacted by a
desired privacy level.

4.2 Domain adaptation with Gaussian
Smoothed Sliced Divergence

As an application, we have considered the problem
of unsupervised domain adaptation for a classification
task. In this context, given source examples Xs and
their label ys and unlabeled target examples Xt, our
goal is to design a classifier h(·) learned from the source
examples that generalizes well on the target ones. A
classical approach consists in learning a representation
mapping g(·) that leads to invariant latent representa-
tions, invariance being measured as a distance between
empirical distributions of mapped source and target
samples. Formally, this leads to the following problem

min
g,h

Lc(h(g(Xs)),ys) +D(g(Xs), g(Xt))

where Lc can be the cross-entropy loss or a quadratic
loss and D a divergence between empirical distribu-
tions, in our case, D will be any Gaussian smoothed
sliced divergence. We solve this problem through



Figure 6: Domain adaptation performances using different divergences on distributions with respect to the
Gaussian smoothing. (left) USPS to MNIST. (middle) Office-31 Webcam to DSLR. (right) Office-31 Amazon to
Webcam.

stochastic gradient descent, similarly to many ap-
proaches that use Sliced Wasserstein Distance as a dis-
tribution distance [17]. Note that, in practice, using a
smoothed divergence preserves the privacy of the tar-
get samples as shown by Rakotomamonjy & Ralaivola
[26].

Our experiments evaluate the studied Gaussian-
smoothed sliced divergences in classical unsupervised
domain adaptation. We have considered twi datasets:
a handwritten digit recognition (USPS/MNIST) and
Office 31 datasets. Our goal is to analyze how
our divergences perform compared with non-smoothed
divergences. The first one is the Sliced Wasser-
stein Distance (SWD) [17] and the second one is the
Jenssen-Shannon approximation based on adversarial
approach, known as DANN [9]. For all methods and
for each dataset, we used the same neural network ar-
chitecture for representation mapping and for classi-
fication. Approaches differ only on how distance be-
tween distributions have been computed.

Results are depicted in Figure 6. For the two prob-
lems, we can see that performances obtained with the
Gaussian smoothed sliced Wasserstein or MMD diver-
gences are similar to those obtained with DANN or
SWD across all ranges of noise. The smoothed ver-
sion of Sinkhorn is less stable and induces a slight loss
of performance. Owing to the metric property and
the induced weak topology, the privacy preservation
comes almost without loss of performance in this do-
main adaptation context.

5 Conclusion

In this study, we have analyzed the properties of Gaus-
sian smoothed sliced divergence for comparing distri-
butions as they play a crucial role in a privacy pre-
serving context. We have derived several theoretical
results related to their topological and statistical prop-
erties. More precisely, we have shown that under mild

condition on their base divergence, the smoothing and
slicing operations preserves metric property. From a
statistical point of view, we have shown that sample
complexity does not depend on the dimension of the
problem and follows a similar complexity than their
sliced version, although some overhead may have to
be paid due to the smoothing. We have illustrated
those theoretical findings through some experimental
analyses on toy problem. We have also analyzed the
behavior of our divergence on domain adaptation prob-
lems and confirm the fact that using those divergences
yields only to slight loss of performances while pre-
serving privacy. One lesson we have also learnt is that
Gaussian smoothed sliced MMD seems to present sev-
eral strong benefits in term of sample complexity.
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A Additional definitions

A.1 Maximum Mean Discrepancy

Let k : X × X → R be the reproducing kernel of a
reproducing kernel Hilbert space H. The metric on
distance denoted as maximum mean discrepancy be-
tween µ and ν belonging to P(X ) is defined as:

MMD(µ, ν) =

∥∥∥∥∫ k(·, x)dµ(x)−
∫
k(·, x)dν(x)

∥∥∥∥
H
.

For empirical distributions, one can estimate the
MMD using biased or unbiased formulations as given
by Gretton et al. [11]: For empirical distributions, one
can estimate the MMD using biased or unbiased for-
mulations as given by Gretton et al. [11]:

MMD(µ̂, ν̂) =

[
1

n2

∑
i,j

k(xi, xj) +
1

m2

∑
i,j

k(yi, yj)

− 2

nm

∑
i,j

k(xi, yj)

] 1
2

A.2 Sinkhorn Divergence and Gaussian
Smoothed Sliced Sinkhorn Divergence

Let define the entropic regularized Wasserstein dis-
tance [6] between distributions µ and ν as

W p
p,λ(µ, ν) = inf

γ∈Π(µ,ν)

∫
Rd×Rd

‖x− y‖pγ(x, y)dxdy

+ λH(γ|µ⊗ ν).

where the set Π(µ, ν) is defined as in Section 2. The
term H(·|·) is the relative entropy regularization of the
transport plan with respect to the product measure
µ⊗ ν, and is given by

H(γ|µ⊗ ν) =

∫∫
log
( dγ(x, y)

dµ⊗ dν(x, y)

)
dγ(x, y).

The related regularization parameter is λ ≥ 0. Then,
the Sinkhorn divergence is defined as

SKDλ(µ, ν) = W p
p,λ(µ, ν)−1

2
W p
p,λ(µ, µ)−1

2
W p
p,λ(ν, ν).

Accordingly the Gaussian Smoothed Sliced Sinkhorn
Divergence is expressed as

GσSKD
p
p,λ(µ, ν)

=

∫
Sd−1

SKDp
λ(Ruµ ∗ Nσ,Ruν ∗ Nσ)ud(u)du.

B Proofs

B.1 Proof of Theorem 1

• Non-negativity (or symmetry). The non-negativity
(or symmetry) follows directly from the non-negativity
(or symmetry) of Dp, see Definition 3.
• Identity property. For the identity property, if the
base divergence Dp satisfies the identity property in
one dimenstional measures, then for any µ ∈ P(Rd)
and u ∈ Sd−1, one has that Dp(Ruµ ∗ Nσ,Ruµ ∗
Nσ) = 0, hence, by Definition 3, GσSD

p(µ, µ) =
0. Let us now prove the fact that for any µ, ν ∈
P(Rd), GσSDp(µ, µ) = 0 entails µ = ν a.s. On one
hand, GσSD

p(µ, µ) = 0 gives the fact that Dp(Ruµ ∗
Nσ,Ruν∗Nσ) = 0 for ud-almost every u ∈ Sd−1, hence
Ruµ ∗ Nσ = Ruν ∗ Nσ for ud-almost every u ∈ Sd−1.
Following the techniques in proof of Proposition 5.1.2
in [4], for any measure η ∈ P(Rm) (with m ≥ 1),
F [η](·) stands for the Fourier transform of s and is

given as F [η](v) =
∫
Rm e

−is>vdη(v) for any v ∈ Rm.
Then

F [Ruµ ∗ Nσ](v) =

∫
R
e−ivtd(Ruµ ∗ Nσ)(t)

=

∫
R

∫
R
e−i(r+t)vdRuµ(r)dNσ(t)

=

∫
Rd

∫
R
e−i(〈u,s〉+t)vdµ(s)dNσ(t)

=

∫
R
e−itvdNσ(t)

∫
Rd
e−i(〈u,s〉)vdµ(s)

= F [Nσ](v)F [µ](vu).

Since for ud-almost every u ∈ Sd−1,Ruµ ∗ Nσ =
Ruν ∗ Nσ, and hence F [Ruµ ∗ Nσ] = F [Ruν ∗ Nσ]⇔
F [Nσ]F [µ] = F [Nσ]F [ν] ⇔ F [µ] = F [ν]. Since the
Fourier transform is injective, we conclude that µ = ν.
•Triangle inequality. Assume that Dp is a metric and
let µ, ν, η ∈ P(Rd). We then have

GσSD(µ, ν)

=
{∫

Sd−1

Dp(Ruµ ∗ Nσ,Ruν ∗ Nσ)ud(u)du
}1/p

≤
{∫

Sd−1

(
D(Ruµ ∗ Nσ,Ruη ∗ Nσ)

+D(Ruη ∗ Nσ,Ruν ∗ Nσ)
)p
ud(u)du

}1/p

≤︸︷︷︸
(?)

{∫
Sd−1

(
Dp(Ruµ ∗ Nσ,Ruη ∗ Nσ)ud(u)du

}1/p

+
{∫

Sd−1

Dp(Ruη ∗ Nσ,Ruν ∗ Nσ)
)p
ud(u)du

}1/p

= GσSD(µ, η) +GσSD(η, ν),

where inequality in (?) follows from the application of
Minkowski inequality.



B.2 Proof of Proposition 1

Let us first upper bound the k-th moment of Mk(Ruµ∗
Nσ), for all k ≥ 1. For all u ∈ Sd−1, one has

Mk(Ruµ ∗ Nσ) =

∫
R
|t|kd(Ruµ ∗ Nσ)(t)

=

∫
R

∫
R
|r + t|kdRuµ(r)dNσ(t)

=

∫
Rd

∫
R
|〈u, s〉+ t|kdµ(s)dNσ(t).

Using the elementary inequality (a+ b)k ≤ 2k−1(ak +
bk) for k ≥ 1, a ≥ 0, and b ≥ 0, we obtain

Mk(Ruµ ∗ Nσ)

≤ 2k−1

∫
Rd

∫
R

(
|〈u, s〉|k + |t|k

)
dµ(s)dNσ(t)

≤ 2k−1
(
||u||
∫
Rd
||s||kdµ(s) +

∫
R
|t|kdNσ(t)

)
≤ 2k−1

(∫
Rd
||s||kdµ(s) +

∫
R
|t|kdNσ(t)

)
= 2k−1(Mk(µ)) +Mk(Nσ)).

We then use the following result:

Lemma 1 (see proof of Theorem 1 in [8]). Let η ∈
P(R) and let p ≥ 1. Assume that Mq(η) < ∞ for
some q > p. There exists a constant Cp,q depending
only on p, q such that, for all n ≥ 1,

E[W p
p (η̂n, η)] ≤ Cp,qMq(η)p/q


n−1/21q>2p,

n−1/2 log(n)1q=2p

n−(q−p)/q1q∈(p,2p).

Let us fix µ ∈ Pq(Rd) with q > p ≥ 1 an empirical
measure µ̂n. Then, one has

Mq(Ruµ ∗ Nσ) ≤ 2q−1(Mq(µ)) +Mq(Nσ)) <∞.

By Lemma 1, we obtain

E[GσSWDp
p(µ̂n, µ)]

= E

[ ∫
Sd−1

W p
p (Ruµ̂n ∗ Nσ,Ruµ ∗ Nσ)ud(u)du

]

≤ Cp,q


n−1/21q>2p,

n−1/2 log(n)1q=2p

n−(q−p)/q1q∈(p,2p).

×
∫
Sd−1

Mq(Ruµ ∗ Nσ)p/qud(u)du

≤ Cp,q


n−1/21q>2p,

n−1/2 log(n)1q=2p

n−(q−p)/q1q∈(p,2p).

×

{(
2q−1(Mq(µ)) +Mq(Nσ))

)p/q
1q∈2N∗ ,(

2q−1(Mq(µ))
)p/q

1q∈2N+1.

On the other hand, since Wp(·, ·) is a metric, by ap-
plying Theorem 3, we obtain the following:

E[|GσSWDp(µ̂n, ν̂n)−GσSWDp(µ, ν)|]

≤ 2Cp,q


n−1/21q>2p,

n−1/2 log(n)1q=2p

n−(q−p)/q1q∈(p,2p).

×

{(
2q−1(Mq(µ, ν)) +Mq(Nσ))

)p/q
1q∈2N∗(

2q−1(Mq(µ, ν))
)p/q

1q∈2N+1.

B.3 Proof of Theorem 4

Using Holder’s inequality, we have

Eu∼ud
[∣∣ĜσSDp

(µ, ν)−GσSDp(µ, ν)
∣∣]

≤
(
Eu∼ud

[∣∣ĜσSDp
(µ, ν)−GσSDp(µ, ν)

∣∣2])1/2

=
(
Vu∼ud

[∣∣ĜσSDp
(µ, ν)

∣∣])1/2

=
(
Vu∼ud

[∣∣GσSDp(µ, ν)
∣∣])1/2

=
A(p, σ)√

L
.

B.4 Proof of Proposition 4

The proof follows the same lines in proof of Lemma 1
in [23]. First, we have thatNσ2 = Nσ1∗N√σ2

2−σ2
1

. Set-

ting the following random variables: Xu ∼ Ruµ, Yu ∼
Ruν, ZX ∼ Nσ1

, ZY ∼ Nσ1
, Z ′X ∼ N√σ2

2−σ2
1

, Z ′Y ∼
N√

σ2
2−σ2

1

. The sliced Wasserstein distance Wp
p(Ruµ ∗

Nσ2 ,Ruν ∗ Nσ2) is given as a minimization over cou-
plings (Xu, ZX , Z

′
X) and (Yu, ZY , Z

′
Y ). Using the in-

equality E[|X|p]− 2p−1E[|Y |p] ≤ 2p−1E[|X + Y |p] for
any random variables X,Y ∈ Lp integrable, we obtain,

2p−1E
[
|(Xu + ZX)− (Yu + ZY ) + (Z ′X + Z ′Y )|p

]
≥ E

[
|(Xu + ZX)− (Yu + ZY )|p

]
− 2p−1E

[
|(Z ′X + Z ′Y )|p

])
.

Hence,

2p−1Wp
p(Ruµ ∗ Nσ2

,Ruν ∗ Nσ2
)

≥ inf
(
E
[
|(Xu + ZX)− (Yu + ZY )|p

]
− 2p−1E

[
|(Z ′X + Z ′Y )|p

]))
≥Wp

p(Ruµ ∗ Nσ1
,Ruν ∗ Nσ1

)

− 2p−1 sup E
[
|(Z ′X + Z ′Y )|p

]
≥Wp

p(Ruµ ∗ Nσ1
,Ruν ∗ Nσ1

)− 2p sup E
[
|(Z ′X)|p

]
.

Therefore,

2p−1Gσ2SWDp
p(µ, ν) ≥ Gσ1SWDp

p(µ, ν)|
− 2pud(Sd−1) sup E

[
|(Z ′X)|p

]
,



hence,

Gσ1
SWDp

p(µ, ν)| ≤ 2p−1Gσ2
SWDp

p(µ, ν)

+ 2pud(Sd−1) sup E
[
|(Z ′X)|p

]
.

Recall that if Z ∼ Nσ

E[|Z|p] =
2pΓ((p+ 1)/2)

Γ(1/2)
σ2p ≤ 2p/2σ2p.

and ud(Sd−1) = 2πd/2

Γ(d/2) then

Gσ1SWDp
p(µ, ν) ≤ 2p−1Gσ2SWDp

p(µ, ν) +
2πd/2

Γ(d/2)
23p/2(σ2

2 − σ2
1)2p.


