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Objectives
• Introduce a novel strategy for efficiently
approximating the optimal transport (OT) distance
between two discrete measures.
•Propose the Screenkhorn algorithm: solve a
smaller Sinkhorn problem while ensuring
approximation.
• Illustrate the efficiency of Screenkhorn on
complex tasks such as domain adaptation with
regularized OT.

Introduction

•OT is a method for comparing probability distributions
with the ability to incorporate spatial information.

(courtesy of M. Cuturi)
•Given µ = ∑n

i=1µiδxi and ν = ∑m
j=1 νjδxj two

discrete probability distributions and a nonnegative cost
matrix CC = ( CCij) ∈ Rn×m

+ , the OT (Wasserstein)
distance writes as

S(µ,ν) = min
P∈Π(µ,ν)

〈 CC,P 〉,

where
Π(µ,ν) = {P ∈ Rn×m

+ ,P1m = µ,P>1n = ν}.
.
•Sinkhorn Divergence: The entropic regularization of
OT distances relies on the addition of a penalty term:

Sη(µ,ν) = min
P∈Π(µ,ν)

{〈 CC,P 〉 − ηH(P )},

where H(P ) = −∑
i,j P ij log(P ij) is the negative

entropy and η > 0 is a regularization parameter.

Dual of Sinkhorn Divergence

•The dual of Sinkhorn divergence is given by

Sd
η(µ,ν) = min

u∈Rn,v∈Rm
{Ψ(u,v)},

where Ψ(u,v) := 1>nB(u,v)1m − 〈u,µ〉 − 〈v,ν〉,
B(u,v) := diag(eu) KKdiag(ev), KK := e− CC/η.
•The optimal solution P ? of the primal problem
Sd
η(µ,ν) takes the form P ? = diag(eu?) KKdiag(ev?),

where (u?,v?) = argminu,v{Ψ(u,v)}.

Static Screening Test

•OT plans present a large number of neglectable values.
This favorites the using of static screening test like in
supervised learning (Lasso).
•Based on this idea, we define a so-called approximate

dual of Sinkhorn divergence

Sad
η (µ,ν) = min

u∈Cnε
κ
,v∈Cmεκ
{Ψκ(u,v)},

Ψκ(u,v) := 1>nB(u,v)1m − 〈κu,µ〉 − 〈vκ,ν〉, and
Crα = {w ∈ Rr : ewi ≥ α}, for α > 0.

Toy Example
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Screening Preprocessing

Let (u∗,v∗) be an optimal solution of Sad
η (µ,ν) then eu∗i = ε

κ and ev∗j = εκ for all i ∈ I{ε,κ and j ∈ J{
ε,κ where

Iε,κ =
{
i = 1, . . . , n : µi ≥

ε2

κ
ri( KK)

}
and Jε,κ =

{
j = 1, . . . ,m : νj ≥ κε2cj( KK)

}
.

Screening with a Fixed Number Budget
of Points

• Let ξ = µ� r( KK) ∈ Rn and ζ = ν � c( KK) ∈ Rm

sorted in descending order. To keep only nb-budget and
mb-budget of points, the parameters κ and ε satisfy
ε2

κ = ξnb and ε2κ = ζmb
.

•We restrict the constraints feasibility to the screened
domain defined by U sc ∩ V sc, where U sc = {u ∈ Rnb :
eui ≥ ε

κ} and V
sc = {v ∈ Rmb : evj ≥ εκ}, then we

derive the screened dual of Sinkhorn divergence
problem as

Sscd
η (µ,ν) = min

u∈U sc,v∈V sc
{Ψε,κ(u,v)}.

Screenkhorn Algorithm

OT Domain Adaptation (OTDA):
MNIST to USPS
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