

MT23 - Algèbre linéaire

Chapitre 1 - Espaces vectoriels (Partie 2)

Mokhtar Z. Alaya

http://mzalaya.github.io/files/teaching/UTSEUS/MT23/chap1-semaine2.pdf

Université de Shanghai, UTSEUS, 2 septembre 2024

1.1.3 Sous-espaces vectoriels

Dans la suite, nous considérons $(E,+,\cdot)$ un espace vectoriel sur un corps K .

Proposition 1.1.4

F est uns sous-espace vectoriel de E si et seulement si

$$F \neq \varnothing_{\mathsf{et}}$$

Proposition 1.1.5

- E et $\{0\}$ sont des sous-espaces vectoriels de E.
- Le vecteur nul $\vec{0}$ appartient à tous les espaces vectoriels.

Démonstration (Proposition 1.1.5): à faire dans l'exercice A.1.5.

Proposition 1.1.6

Soient F et G sont deux sous-espaces vectoriels alors :

- 1. $F \cap G$ est un sous-espace vectoriel.
- 2. $F \cup G$ n'est toujours pas un sous-espace vectoriel.

1.1.3 Sous-espaces vectoriels

<u>Démonstration (Proposition 1.1.6)</u>:

1.

– On a
$$\vec{0} \in F$$
 et $\vec{0} \in G$ donc $\vec{0} \in F \cap G \Longrightarrow F \cap G \neq \varnothing$.

- soient $\vec{x}, \vec{y} \in F \cap G$ et $\lambda, \mu \in K$ alors : $\vec{x} \in F$ et $\vec{x} \in G$ $\Longrightarrow \lambda \cdot \vec{x} \in F$ et $\lambda \cdot \vec{x} \in G$

De même (similarly) on montre que $\mu \cdot \vec{y} \in F$ et $\mu \cdot \vec{y} \in G$. On arrive à

$$\begin{cases} \lambda \cdot \vec{x} \in F \\ \mu \cdot \vec{y} \in F \end{cases} \implies \lambda \cdot \vec{x} + \mu \cdot \vec{y} \in F \qquad \begin{cases} \lambda \cdot \vec{x} \in G \\ \mu \cdot \vec{y} \in G \end{cases} \implies \lambda \cdot \vec{x} + \mu \cdot \vec{y} \in G$$

Alors $\lambda \cdot \vec{x} + \mu \cdot \vec{y} \in F \cap G$. Donc $F \cap G$ est un sous-espace vectoriel.

2. Contre exemple : il existe F et G deux sous-espaces vectoriels de E tels que $F \cup G$ n'est pas un sous-espace vectoriel.

Soient $E=\mathbb{R}^2$ et $K=\mathbb{R}$ muni des lois habituelles + et . On définit :

$$F = \{(x_1, 0), x_1 \in \mathbb{R}\}_{\text{et}} G = \{(0, x_2), x_2 \in \mathbb{R}\}_{\text{et}}$$

- F et G sont des sous-espaces vectoriels (facile à démontrer).

1.1.3 Sous-espaces vectoriels

- Si on choisit $\vec{y}=(1,0)$ et $\vec{z}=(0,1)$ on : $\vec{y}\in F\Longrightarrow \vec{y}\in F\cup G$ et $\vec{z}\in G\Longrightarrow \vec{z}\in F\cup G$. Mais, le vecteur $\vec{y}+\vec{z}=(1,1)\notin F\cup G$. Ainsi $F\cup G$ n'est pas un sous espace vectoriel.

Remarque

 $F \cup G$ est un sous-espace vectoriel \iff $F \subset G$ ou $G \subset F$. (À faire dans l'exercice A.2.5)

1.1.4 Sous-espaces supplémentaires

<u>Définition</u>:

Soient F et G deux sous-espaces vectoriels de E. On appelle somme de F et G l'ensemble noté F+G défini par :

$$\vec{x} \in F + G \iff \exists \vec{y} \in F, \exists \vec{z} \in G \text{ tel que } \vec{x} = \vec{y} + \vec{z}.$$

Proposition 1.1.7

F+G est un sous-espace vectoriel.

<u>Démonstration (Proposition 1.1.7)</u>: à faire dans l'exercice A.2.6.

Définition:

Soient F et G deux sous-espaces vectoriels de E. On dit que F et G sont en somme direct si $F\cap G=\{\vec{0}\}$. On note $F\oplus G$

On a donc:

$$H = F \oplus G \iff H = F + G \text{ et } F \cap G = \{\vec{0}\}.$$

On dit que F et G sont <u>supplémentaires dans E</u> si $E=F\oplus G$.

Remarque

Il n'y a pas unicité du supplémentaire d'un sous-espace vectoriel donné. <u>Exemple</u>:

Proposition 1.1.8

$$\overline{H} = F \oplus G \iff \forall \vec{x} \in H, \exists ! (\vec{y}, \vec{z}) \in F \times G \text{ tels que } \vec{x} = \vec{y} + \vec{z}$$

Corollaire:

Si $E=F\oplus G$ alors quelque soit $\vec{x}\in E$ il existe un unique $\vec{y}\in F$ et un unique $\vec{z}\in G$ tels que $\vec{x}=\vec{y}+\vec{z}$.

<u>Démonstration (Proposition 1.1.8)</u>:

Soit
$$H = F \oplus G \Longleftrightarrow H = F + G \text{ et } F \cap G = \{\vec{0}\}.$$

$$\Longrightarrow H = F + G.$$

$$\Longrightarrow \forall \vec{x} \in H, \exists \vec{y} \in F, \exists \vec{z} \in G, \vec{x} = \vec{y} + \vec{z}.$$

Maintenant, on montre l'unicité de \vec{y} et \vec{z} . On suppose qu'il existe une autre décomposition $\vec{x} = \vec{y'} + \vec{z'}$. Alors,

$$\vec{x} - \vec{x} = \vec{0} = (\vec{y} - \vec{y'}) - (\vec{z} - \vec{z'})$$

$$\iff \vec{y} - \vec{y'} = \vec{z'} - \vec{z}$$
.

$$\operatorname{Or} \vec{y} - \vec{y'} \in F \text{ et } \vec{z'} - \vec{z} \in G \Longrightarrow \vec{y} - \vec{y'} \in F \cap G \text{ et } \vec{z} - \vec{z'} \in F \cap G.$$

 $\operatorname*{Mais}_{\vec{J}} F \cap G = \{\vec{0}\}, \text{ ce qui implique } \vec{y} - \vec{y'} = \vec{0} \Longrightarrow \vec{y} = \vec{y'} \text{ et } \vec{J} = \vec{J$

$$\vec{z'} - \vec{z} = \vec{0} \Longrightarrow \vec{z} = \vec{z'}.$$

►" <==" (Réciproque). On suppose

$$\forall \vec{x} \in H, \exists! (\vec{y}, \vec{z}) \in F \times G \text{ tels que } \vec{x} = \vec{y} + \vec{z}$$

$$\implies \forall \vec{x} \in H, \exists \vec{y} \in F, \exists \vec{z} \in G, \vec{x} = \vec{y} + \vec{z}$$

$$\Longrightarrow H = F + G$$
.

Il reste à montrer que $F\cap G=\{0\}$.

Soit $\vec{x} \in F \cap G$ alors on écrit :

Soit
$$\vec{x} \in F \cap G$$
 alors on écrit :
$$\vec{x} = \vec{x} + \vec{0} \text{ avec } \vec{x} \in F \text{ et } \vec{0} \in G$$
 et $\vec{x} = \vec{0} + \vec{x} \text{ avec } \vec{0} \in F \text{ et } \vec{x} \in G$, c'est à dire
$$\vec{x} + \vec{0} = \vec{x} = \vec{0} + \vec{x}$$

Or par unicité de la décomposition (existence et unicité), on obtient $\vec{x}=\vec{0}$.

1.2 Espaces vectoriels de dimension finie

1.2.1 Familles liées, familles libres

Définition (famille liée (dependent sequence)) On dit que la famille $S = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$ de vecteurs de E est liée s'il existe des scalaires $\lambda_1, \lambda_2, \dots, \lambda_p \in K$ non tous nuls (non all zero) tels que $\lambda_1 \vec{x}_1 + \lambda_2 \vec{x}_2 + \dots + \lambda_p \vec{x}_p = \vec{0}.$

Remarques

- 1. Si une famille est liée, alors toute famille obtenue en modifiant l'ordre des vecteurs est liée.
- 2. Si p=1, la famille $S=\{\vec{x}_1\}$ est liée $\iff \vec{x}_1 \neq \vec{0}$.
- 3. Si $p \geq 2$, la famille $S = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$ est liée \iff

$$\exists \vec{x}_j, \exists \alpha_1, \alpha_2, \ldots, \alpha_{j-1}, \alpha_{j+1}, \ldots, \alpha_p,$$
 tels que

$$\vec{x}_j = \alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \dots + \alpha_{j-1} \vec{x}_{j-1} + \alpha_{j+1} \vec{x}_{j+1} + \dots + \alpha_p \vec{x}_p.$$

<u>Définition</u> (famille libre (independent sequence))

On dit que la famille $S=\{\vec{x}_1,\vec{x}_2,\dots,\vec{x}_p\}$ de vecteurs de E est libre si elle n'est pas liée. On dit aussi que les vecteurs

$$ec{x}_1,ec{x}_2,\ldots,ec{x}_p$$
 sont linéairement indépendants. Dans ce cas on a :

$$\forall \lambda_1, \lambda_2, \dots, \lambda_p \in K, \lambda_1 \vec{x}_1 + \lambda_2 \vec{x}_2 + \dots + \lambda_p \vec{x}_p = \vec{0} \Longrightarrow \lambda_1 = \lambda_2 = \dots = \lambda_p = 0.$$

Remarques

1. $S = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$ est liée

$$\iff \exists \lambda_1, \lambda_2, \dots, \lambda_p \in K, \{\exists i, \lambda_i \neq 0 \text{ et } \sum_{j=1}^p \lambda_j \vec{x}_j = \vec{0}\}.$$

2. $S = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$ est non liée

$$\iff \forall \lambda_1, \lambda_2, \dots, \lambda_p \in K, \{ \forall i, \lambda_i = 0 \text{ ou } \sum_{j=1}^r \lambda_j \vec{x}_j \neq \vec{0} \}.$$

$$\iff \forall \lambda_1, \lambda_2, \dots, \lambda_p \in K, \Big\{ \sum_{j=1}^p \lambda_j \vec{x}_j = \vec{0} \implies \forall i, \lambda_i = 0 \Big\}.$$

$$\iff$$
 $S = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$ est libre.

Propositions 1.2.1 et 1.2.2

1. Deux vecteurs sont égaux dans une famille

$$S = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$$
 alors elle est liée.

2. Toute famille contenant le vecteur 0 est liée.

3. Si $S=\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_p\}$ est liée alors la famille $\{S,\vec{x}\}$ est liée pour tout vecteur quelconque \vec{x} .

4. Si $S=\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_p\}$ est libre alors la famille $S'=\{\vec{x}_2,\ldots,\vec{x}_p\}$ est libre.

<u>Démonstration (Propositions 1.2.1 et 1.2.2)</u>: Voir l'exercice A.1.11.

Propositions 1.2.3

Si $\mathcal{E} = \{\vec{e}_1, \dots, \vec{e}_p\}$ est une famille libre et si \vec{x} est un vecteur tel que la famille $\mathcal{E} \cup \{\vec{x}\}$ est liée alors \vec{x} est une combinaison linéaire des éléments de $\mathcal{E} = \{\vec{e}_1, \dots, \vec{e}_p\}$.

<u>Démonstration (Proposition 1.2.3)</u>

On a $\mathcal{E} \cup \{\vec{x}\}$ est liée $\Longrightarrow^{\exists lpha_1, \ldots, lpha_p, lpha_{p+1}}$, non tous nuls tels que $\alpha_1 \vec{e}_1 + \cdots + \alpha_p \vec{e}_p + \alpha_{p+1} \vec{x} = \vec{0}$. Supposons $\alpha_{p+1} = 0$ alors la famille ${\cal E}$ est liée, ce qui absurde, donc $\alpha_{p+1} \neq 0$. Ainsi on peut diviser par α_{p+1} .

Propositions 1.2.4 Si $\mathcal{E}=\{\vec{e}_1,\dots,\vec{e}_p\}$ est une famille libre et si \vec{x} admet une décomposition de la forme $\vec{x} = \lambda_1 \vec{e}_1 + \lambda_2 \vec{e}_2 + \cdots + \lambda_p \vec{e}_p$. alors les coefficients $\lambda_1, \lambda_2, \dots, \lambda_p$ sont uniques.

<u>Démonstration (Proposition 1.2.4)</u>: (faite au tableau)

1.2.1 Familles génératrices

<u>Définition</u> (famille génératrice)

On dit que la famille (finie) $S=\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_p\}$ est génératrice si $\vec{x}_1,\ldots,\vec{x}_p\in E$ et

$$\forall \vec{x} \in E, \exists \alpha_1, \dots, \alpha_p \in K, \vec{x} = \sum_{j=1}^{p} \alpha_j \vec{x}_j.$$

<u>Définition</u> (espace vectoriel de type fini)

On dit qu'un espace vectoriel E est de <u>type fini</u> s'il existe une famille génératrice de E contenant un nombre fini de vecteurs.

Propositions 1.2.5

Si $\vec{\mathcal{E}} = \{\vec{e}_1, \dots, \vec{e}_p\}$ est une famille génératrice et si \vec{x} est un vecteur quelconque alors la famille $\mathcal{E} \cup \{\vec{x}\}$ est génératrice.

<u>Démonstration (Proposition 1.2.4)</u>: (À faire en exercice).

1.2.3 Sous-espaces vectoriels engendrés

<u>Définition</u> (sous-espace vectoriel engendré)

Soit E un espace vectoriel sur K et soit $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_p\}$ une famille de vecteurs de E. On appelle <u>sous-espace vectoriel engendré par la famille</u> $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$ et on note $\text{vect} < \vec{x}_1, \vec{x}_2, \dots, \vec{x}_n > \text{l'espace vectoriel}$ défini par

$$\vec{x} \in \text{vect} < \vec{x}_1, \vec{x}_2, \dots, \vec{x}_n > \iff \exists \alpha_1, \dots, \alpha_n \in K, \vec{x} = \sum_{i=1}^n \alpha_i \vec{x}_i.$$

Remarques

- 1. Si $\vec{e} \neq \vec{0}$ alors $D = \text{vect} < \vec{e} > \text{s'appelle une droite}$ vectorielle.
- 2. Si $\vec{e} \neq \vec{0}$ et $\vec{f} \neq \vec{0}$ alors $P = \text{vect} < \vec{e}, \vec{f} > \text{s'appelle un}$ plan vectoriel.

1.2.4 Bases

Définition (base)

Une famille qui est <u>libre et génératrice</u> de E est appelée <u>base</u> de E.

Exemple

1. $E=\mathbb{R}^n \ {
m et} \ K=\mathbb{R}$: base canonique

Propositions 1.2.6

Si $\mathcal{E}=\{\vec{e}_1,\dots,\vec{e}_n\}$ est une base de E si et seulement si pour tout \vec{x} un vecteur quelconque de E il existe des scalaires uniques $\lambda_1,\lambda_2,\dots,\lambda_n$ tels que

$$\vec{x} = \sum_{i=1}^{n} \lambda_i \vec{e}_i$$

<u>Démonstration (Proposition 1.2.6)</u>: (faite au tableau)

Remarque

 $\lambda_1,\lambda_2,\ldots,\lambda_n$ sont les <u>composantes</u> o<u>u coordonnées</u> de $ec{x}$ sur la base \mathcal{E} .

1.2.4 Bases

TD 2 (Homeworks):

- Exercice A.2.8
- Exercice A.2.9 (Questions 1 et 2)
- Exercice A.2.10 (Question 1)
- Exercice A.2.12