Learning the intensity of time events with change-points

joint work with Stéphane ${\sf Ga\"{i}ffas}^2$ and Agathe ${\sf Guilloux}^1$

Mokhtar Zahdi Alaya¹

24 mars 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

¹LSTA – UPMC ²CMAP – Ecole Polytechnique

Plan

・ロト・日本・モート モー うらぐ

Plan

・ロト・日本・モート モー うらぐ

Counting process: definitions

 $N = \{N(t)\}_{0 \le t \le 1}$ is a counting process if:

- N(0) = 0 and $N(t) < \infty, a.s.,$
- N is an increasing, right-continuous function a.s.,
- $\Delta N(t) = N(t) N(t^{-}) \in \{0, 1\}.$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

Counting process: definitions

Doob-Meyer decomposition:

- $\Lambda_0(t) = \mathbb{E}[N(t)] = \int_0^t \lambda_0(s) ds.$
- The intensity of N is defined as follows:

 $\lambda_0(t)dt = \mathbb{P}[N \text{ has a jump in } [t, t+dt)|\mathcal{F}(t^-)].$

Sparse segmentation assumption

Assumption 1

$$\lambda_0(t) = \sum_{\ell=1}^{L_0} eta_{0,\ell} \mathbf{1}_{(au_{0,\ell-1}, au_{0,\ell}]}(t), \, 0 \leq t \leq 1,$$

- Parameters to be estimated:
 - $\{\tau_{0,\ell}: 1 \leq \ell \leq L_0\}$: the set of the true change-points,
 - $\{\beta_{0,\ell}: 1 \leq \ell \leq L_0\}$: the set of the coefficients of the intensity λ_0 ,

• L_0 : the number of the true the change-points.

- Signal processing: Segmentation of the audio signals.
- Time series analysis.
- Study of the genomic profiles: RNA-seq.
- RNA-seq can be modelled mathematically as replications of an inhomogeneous counting process with a piecewise constant intensity (Shen, Zhang (2012)).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• The assumption that the process is in [0, 1] is for the sake of simplicity.

Assumption 2

We observe *n* i.i.d copies of *N* on [0, 1], denoted N_1, \ldots, N_n .

- We define $\overline{N}_n(I) = \frac{1}{n} \sum_{i=1}^n N_i(I)$, $N_i(I) = \int_I dN_i(t)$, for all subinterval I of [0, 1].
- Assumption 2 is equivalent to observing a single process N with intensity nλ₀.

Plan

・ロト・日本・モート モー うらぐ

A procedure based on total-variation penalization

• We introduce the least-squares functional

$$R_n(\lambda) = \int_0^1 \lambda(t)^2 dt - \frac{2}{n} \sum_{i=1}^n \int_0^1 \lambda(t) dN_i(t).$$

• Fix $m = m_n \ge 1$, an integer that shall go to infinity as $n \to \infty$.

 We approximate λ₀ in the set of nonnegative piecewise constant functions on [0, 1] given by

$$\Lambda_m = \Big\{ \lambda_\beta = \sum_{j=1}^m \beta_{j,m} \lambda_{j,m} : \beta = [\beta_{j,m}]_{1 \le j \le m} \in \mathbb{R}^m_+ \Big\},\$$

where

$$\lambda_{j,m} = \sqrt{m} \mathbf{1}_{l_{j,m}}$$
 et $l_{j,m} = \left(\frac{J-1}{m}, \frac{J}{m}\right].$

• We consider the estimator

$$\hat{\beta} = \underset{\beta \in \mathbb{R}^m_+}{\operatorname{argmin}} \Big\{ R_n(\lambda_\beta) + \|\beta\|_{\mathsf{TV},\hat{w}} \Big\}.$$

• The weighted total-variation penalty is given by:

Data-driven total-variation norm

$$\|\beta\|_{\mathsf{TV},\hat{\mathbf{w}}} = \sum_{j=2}^{m} \hat{\mathbf{w}}_{j} |\beta_{j} - \beta_{j-1}|.$$

- [ŵ_j]_{1≤j≤m}, where ŵ₁ = 0, and ŵ_j ≥ 0, controls the sparsity of the successive difference of the vector β.
- The estimator of λ_0 is defined as follows:

$$\hat{\lambda} = \lambda_{\hat{\beta}} = \sum_{j=1}^{m} \hat{\beta}_{j,m} \lambda_{j,m}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Plan

・ロト・日本・モート モー うらぐ

Fix x > 0, and introduce the data-driven weights,

Data-driven weights

$$\hat{w}_j = 5.66 \sqrt{\frac{m(x + \log m + \hat{h}_{n,x,j})\hat{V}_j}{n}} + 9.31 \frac{\sqrt{m}(x + 1 + \log m + \hat{h}_{n,x,j})}{n}.$$

•
$$\hat{V}_j = \bar{N}_n\left(\left(\frac{j-1}{m}, 1\right]\right)$$
.

- $\hat{h}_{n,x,j} = 2 \log \log \left(\frac{6en\hat{V}_j + 14e(x + \log m)}{28(x + \log m)} \lor e \right)$: a technique term given by the Bernstein inequality (Gaïffas, Guilloux (2012)).
- In practical, we consider the dominant term of the data-driven weights

$$\hat{w}_j pprox \sqrt{rac{m\log m}{n}} ar{N}_n \Big(\Big(rac{j-1}{m}, 1\Big] \Big).$$

- The linear space Λ_m is endowed by the norm $\|\lambda\| = (\int_0^1 \lambda^2(t) dt)^{1/2}$.
- We consider the general case of any intensity function of a counting process.
- The estimator $\hat{\lambda}$ satisfies the following:

Theorem 1 [A., Gaïffas, Guilloux (2014)]

Fix x > 0 and let the data-driven weights \hat{w} defined as above. Then, we have

$$\|\hat{\lambda} - \lambda_0\|^2 \le \inf_{\beta \in \mathbb{R}^m_+} \left(\|\lambda_\beta - \lambda_0\|^2 + 2\|\beta\|_{\mathsf{TV},\hat{w}} \right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with a probability larger than $1 - 12.85e^{-x}$.

Oracle inequality with fast rate: under Assumption 1

• Let \hat{S} : the support of the discrete gradient of $\hat{\beta}$,

$$\hat{S} = \{j: \hat{\beta}_{j,m} \neq \hat{\beta}_{j-1,m} \text{ pour } j = 2, \dots, m\}.$$

• Let \hat{L} : the estimated number of change-points defined by: $\hat{L} = |\hat{S}|.$

Theorem 2 [A., Gaïffas, Guilloux (2014)]

Fix x > 0, let $\hat{\lambda}$ be the same as in Theorem 1. Assume that \hat{L} satisfies $\hat{L} \leq L_{\max}$. Then, we have

$$\begin{split} \|\hat{\lambda} - \lambda_0\|^2 &\leq \inf_{\beta \in \mathbb{R}^m_+} \left\|\lambda_\beta - \lambda_0\right\|^2 + 6(L_{\max} + 2(L_0 - 1)) \max_{1 \leq j \leq m} \hat{w}_j^2 \\ &+ \kappa_1 \frac{\|\lambda_0\|_{\infty} \left(x + L_{\max}(1 + \log m)\right)}{n} \\ &+ \kappa_2 \frac{m(x + L_{\max}(1 + \log m))^2}{n^2}, \end{split}$$

with a probability larger than $1 - L_{\max}e^{-x}$, with $\|\lambda_0\|_{\infty} = \sup_{t \in [0,1]} \lambda_0(t)$, $K_1 = 1670.89$, and $K_2 = 6683.53$.

Oracle inequality with fast rate: under Assumption 1

• let $\beta_{0,m} = [\beta_{0,j,m}]_{1 \le j \le m}$ the coefficients vector of the projection of λ_0 on Λ_m , and $\Delta_{\beta,\max} = \max_{1 \le \ell, \ell' \le L_0} |\beta_{0,\ell} - \beta_{0,\ell'}|$.

Lemma: Control of the bias

Given Assumption 1, we have

$$\|\lambda_eta-\lambda_0\|^2 \leq rac{2(L_0-1)\Delta^2_{eta,\mathsf{max}}}{m}.$$

- Theorem 2 proves that our procedure has a fast rate of convergence of order (L_{max} ∨L₀)m log m n.
- A consequence is that an optimal tradeoff between approximation and complexity is given by the choice $m \approx n^{1/2}$.

• If
$$L_{\max} = O(m) \Rightarrow m \approx n^{1/3}$$

- If $L_{\max} = O(1) \Rightarrow m \approx n^{1/2}$.
- We are able to use the same procedure in Theorems 1 and 2, while it is not the case in the signal + white noise considered (Harchaoui and Levy Leduc (2010)).

Plan

・ロト・日本・モート モー うらぐ

Change-point detection: consistency

 The approximate change-points sequence [j_ℓ]_{0≤ℓ≤L₀} is defined as the right-hand side boundary of the unique interval I_{jℓ,m} that contains the change-point τ_{0,ℓ}.

• $\tau_{0,\ell} \in \left(\frac{j_{\ell}-1}{m}, \frac{j_{\ell}}{m}\right]$, for $\ell = 1, \dots, L_0 - 1$, where $j_0 = 0$ and $j_{L_0} = m$ by convention.

• Let $\hat{S} = {\hat{j}_1, \dots, \hat{j}_{\hat{L}}}$ with $\hat{j}_1 < \dots < \hat{j}_{\hat{L}}$ of the support of the discrete gradient of $\hat{\beta}$.

• We introduce $\hat{j}_0 = 0$ and $\hat{j}_{\hat{L}+1} = m$, we define simply $\hat{\tau}_{\ell} = \frac{\hat{j}_{\ell}}{m}$ for $\ell = 0, \dots, \hat{L} + 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• We will not be able to recover the exact position of two change-points if they lie on the same interval $I_{j,m}$.

Assumption 3

Grant Assumption 1 and assume that there is a positive constant $c \ge 8$ such that

$$\min_{1 \le \ell \le L_0} |\tau_{0,\ell} - \tau_{0,\ell-1}| > \frac{c}{m},$$

 \longrightarrow The change-points of λ_0 are sufficiently far apart. \longrightarrow There cannot be more than one change-point in the "high-resolution" intervals $I_{j,m}$.

• The procedure will be able to recover the (unique) intervals $I_{j_{\ell},m}$, for $\ell = 0, \ldots, L_0$, where the change-point belongs.

- $\Delta_{j,\min} = \min_{1 \le \ell \le L_0 1} |j_{\ell+1} j_{\ell}|$, the minimum distance between two consecutive terms in the change-points of λ_0 .
- $\Delta_{\beta,\min} = \min_{1 \le q \le m-1} |\beta_{0,q+1,m} \beta_{0,q,m}|$, the smallest jump size of the projection $\lambda_{0,m}$ of λ_0 onto Λ_m .
- $(\varepsilon_n)_{n\geq 1}$, a non-increasing and positive sequence that goes to zero as $n \to \infty$, and such that $m\varepsilon_n \geq 6$ for any $n \geq 1$.

Assumption 4

We assume that $\Delta_{j,\min}$, $\Delta_{\beta,\min}$ and $(\varepsilon_n)_{n\geq 1}$ satisfy

$$\frac{\sqrt{nm}\varepsilon_n\Delta_{\beta,\min}}{\sqrt{\log m}} \to \infty \text{ and } \frac{\sqrt{n}\Delta_{j,\min}\Delta_{\beta,\min}}{\sqrt{m\log m}} \to \infty, \text{ as } n \to \infty.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assumption 4 controls the rate (ε_n) of convergence of τ_ℓ towards τ_{0,ℓ}.

Theorem 3 [A., Gaïffas, Guilloux (2014)]

Under Assumptions 3 and 4, and if $\hat{L} = L_0 - 1$, then the change-points estimators $\{\hat{\tau}_1, \ldots, \hat{\tau}_{\hat{L}}\}$ satisfy

$$\mathbb{P}\Big[\max_{1\leq \ell\leq L_0-1}|\hat{\tau}_{\ell}-\tau_{0,\ell}|\leq \varepsilon_n\Big]\to 1, \ \text{as} \ n\to\infty.$$

- If $m = n^{1/3}$, Theorem 3 holds with $\varepsilon_n = n^{-1/3}$, $\Delta_{\beta,\min} = n^{-1/6}$ et $\Delta_{j,\min} \ge 6$.
- $m = n^{1/2}$, Theorem 3 holds with $\varepsilon_n = n^{-1/2}$, $\Delta_{\beta,\min} = n^{-1/6}$ et $\Delta_{j,\min} \ge 6$.

・ロト・西ト・ヨト・ヨー もくの

Change-point detection: consistency

- We evaluate a non-symmetrized Hausdorff distance $\mathcal{E}(\hat{\mathcal{T}} \| \mathcal{T}_0)$ between:
- The set of estimated change-points $\hat{\mathcal{T}} = \{\hat{\tau}_1, \dots, \hat{\tau}_{\hat{L}}\}$
- The set of true change-points $\mathcal{T}_0 = \{\tau_{0,1}, \ldots, \tau_{0,L_0-1}\},\$
- $\mathcal{E}(A||B) = \sup_{b \in B} \inf_{a \in A} |a b|$, for two sets A and B.

Theorem 4 [A., Gaïffas, Guilloux (2014)]

Under Assumptions 3 and 4, and if $\hat{L} \ge L_0 - 1$, we have

$$\mathbb{P}\Big[\mathcal{E}(\hat{\mathcal{T}}\|\mathcal{T}_0) \leq \varepsilon_n\Big] \to 1, \text{ as } n \to \infty.$$

• Theorem 4 ensures that even when the number of change-points is over-estimated, each true change-point is close to the estimated one.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• We are able to use the same regularization parameters \hat{w} .

Plan

・ロト・日本・モート モー うらぐ

Algorithm: Proximal operator of the weighted TV

The proximal operator prox_f of a proper, lower semi-continuous, convex function f : ℝ^m → (-∞, ∞], is defined as

$$\operatorname{prox}_{f}(v) = \operatorname{argmin}_{x \in \mathbb{R}^{m}} \left\{ \frac{1}{2} \|v - x\|_{2}^{2} + f(x) \right\}, \text{ for all } v \in \mathbb{R}^{m}.$$

$$\hat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}_{+}^{m}} \Big\{ \frac{1}{2} \| \mathbf{N} - \boldsymbol{\beta} \|_{2}^{2} + \| \boldsymbol{\beta} \|_{\mathsf{TV}, \hat{\boldsymbol{w}}} \Big\},$$

where $\mathbf{N} = [\mathbf{N}_j]_{1 \leq j \leq m} \in \mathbb{R}^m_+$ is given by

$$\mathbf{N} = \begin{bmatrix} \sqrt{m}\bar{N}_n(I_{1,m}) \\ \vdots \\ \sqrt{m}\bar{N}_n(I_{m,m}) \end{bmatrix}$$

$$\hat{\beta} = \operatorname{prox}_{\|\cdot\|_{\mathsf{TV},\hat{\boldsymbol{w}}}}(\mathsf{N}).$$

・ロト・白ト・ヨト・ヨー シタの

- If we have a feasible dual variable *û*, we can compute the primal solution β̂, by Fenchel duality.
- The KKT optimality conditions characterize the unique solutions $\hat{\beta}$ and $\hat{\theta}_k := \hat{w}_{k+1} \hat{u}_k$.
- The algorithm consists in running forwardly through the samples $[\mathbf{N}_k]_{1 \le k \le m}$.
- Using the KKT, at location k, $\hat{\beta}_k$ stays constant where $|\hat{\theta}_k| < \hat{w}_{k+1}$.
- If this is not possible, it goes back to the last location where a jump can be introduced in $\hat{\beta}$, validates the current segment until this location, starts a new segment, and continues.

Simulated data

 We simulate counting processes with inhomogeneous piecewise intensities λ₀, with 5, 15 and 30 change points.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで

We plot the estimator for the three models

き▶ ▲ 差 ▶ 注 の < (~)

- To evaluate the performance of the total-variation procedure λ̂, we use a Monte-Carlo averaged mean integrated squared error MISE.
- MISE $(\hat{\lambda}, \lambda_0) = \mathbb{E} \int_0^1 (\hat{\lambda}(t) \lambda_0(t))^2 dt.$
- We run 100 Monte-Carlo experiments, for an increasing sample size between n = 500 and n = 30000, for each 3 examples.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- We plot the MISEs of the weighted and the unweighted total variation, $\hat{w} \equiv 1$, for the three models, as a function of the sample size.
- The estimation error is always decaying with the sample size.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Next generations sequencing (NGS)

- Complementary base pairing, A < > T and C < > G
- Genome is a complete set of DNA in an organism.
- Gene is a DNA sequence that encodes a protein or an RNA molecule.
- DNA is transcribed to mRNA, which is translated into protein (central dogma).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Next generations sequencing, RNA-seq

(a) The sequencing step

(b) The mapping step

Detection of Copy number variation (CNV)

- Copy number variations (CNVs), which are gains or deletions of genomic segments, account for a substantial proportion of human genetic variations.
- CNVs play an important role in the pathogenesis and progression of cancer and confer susceptibility to a variety of human disorders.

- We applied our method to the sequencing data of the breast tumor cell line HCC1954 and its reference cell line BL1954 (Chiang et al. 2009).
- The dataset was produced using the Illumina platform, where the reads are 36bp long.
- There are 7.72 million reads for the tumor (HCC1954) samples.
- There are 6.65 million reads for the normal (BL1954) samples.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Binned counts of reads on the tumor data

base pairs

Binnned counts of reads on the normal data

base pairs

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Weighted total-variation estimator on the tumor data

Unweighted total-variation estimator for the tumor data

base pairs

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Weighted total-variation estimator for the normal reads

Unweighted total-variation estimator for the normal data

SAC ъ ł

Plan

・ロト・日本・モート モー うらぐ

- We introduce a data-driven weighted total-variation penalization for this problem.
- We prove that convex optimization for the detection of change-points in the intensity of a counting process is a powerful tool.
- We prove two families of theoretical results: oracles inequalities for the prediction error, and consistency in the estimation of change-points.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The study of maximum likelihood estimation instead of least-squares.
- Multivariate extension of the proposed algorithm.

References

ElMokhtar E. Alaya, S. Gaïffas, et A. Guilloux (2014) : Learning the intensity of time events with change-points, *in revision.*

 D.Y Chiang, G. Getz, D. B Jaffe, M.JT O'Kelly, X.vZhao, S. L Carter, Carsten Russ, C. Nusbaum, M. Meyerson, and E.S Lander. High-resolution mapping of copy-number alterations with massively parallel sequencing.

Nature methods, 6(1):99–103, 2009.

🚺 L. Condat, (2013) :

A direct algorithm for 1D total variation denoising, IEEE Signal Proc. Letters, 20, 11, 1054–1057.

 S. Gaïffas, A. Guilloux (2012) :
 High-dimensional additive hazards models and the Lasso, *Electron. J. Stat., 6, 522–546.*

Z. Harchaoui, C. Lévy-Leduc (2010) : Multiple change-point estimation with a total variation penalty,

J. Amer. Statist. Assoc., 105, 1480–1493.

J. J. Shen and N. R. Zhang, (2012) :

Change-point model on nonhomogeneous Poisson processes with application in copy number profiling by next-generation DNA sequencing,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ann. Appl. Stat., 6(2):476-496.

Thank you!

<□ > < @ > < E > < E > E のQ @