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Part 0

Supervised Learning in High-Dimensions



Supervised learning: framework

→

Setting

• Data xi ∈ X = Rp, yi ∈ Y for i = 1, . . . , n. The xi are called
features and the yi are called labels.

• The labels are scalar numbers. We assume that Y ⊂ R.
Y = {−1,+1},Y = {0, 1} for binary classification.
Y = R for regression.

• Usually the data Dn = {(xi , yi ) : i = 1, . . . , n} is supposed to
be i.i.d.

Goal

• Based on (xi , yi ), learn a function that predicts y based on a
new x (generalization property).

High-dimension

• p is larger than n.
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Work-flow of supervised learning

←

Mokhtar Z. Alaya Modal’X, 11th May 2017 Supervised Learning with weighted TV 2 / 40



Supervised learning: empirical risk + penalization

Minimize with respect to f : Rp → R

Rn(f ) + γpen(f )

where
•

Rn(f ) =
1

n

n∑
i=1

`(yi , f (xi ))

is a goodness-of-fit, or empirical risk, where ` is a loss
function.

• pen is a penalization function, that encodes a prior
assumption on f .

• γ > 0 is a tuning parameter, that balances good-of-fitness
and penalization.

• Simplification: choose a linear function f :

f (x) = x>β =

p∑
j=1

xjβj ,

for a parameter β ∈ Rp to be trained.Mokhtar Z. Alaya Modal’X, 11th May 2017 Supervised Learning with weighted TV 3 / 40



Supervised learning: empirical risk + penalization

• We end up with:

β̂ ∈ argmin
β∈Rp

{Rn(β) + λpen(β)},

where

Rn(β) =
1

n

n∑
i=1

`(yi , x
>
i β)

and pen(β) is a penalization on β.

• Choice of penalization !
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Supervised learning: Lasso penalization and its derivatives

• L0-quasi-norm: pen(β) = ‖β‖0 = #{j : βj 6= 0}.
• Lasso (L1-norm): pen(β) = ‖β‖1 =

∑p
j=1 |βj | [Tibshirani

(1996)].

• Elastic-Net ((L1 + L2
2)-norm): pen(β) = ‖β‖1 + ‖β‖2

2 [Zou and

Hastie (2005)].

• Fused Lasso (L1 + TV): pen(β) = ‖β‖1 + ‖β‖TV [Tibshirani

et al. (2005)] where ‖ · ‖TV is the total-variation penalization
defined as

‖β‖TV =

p∑
j=2

|βj − βj−1|.
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Weighted TV

• For a chosen positive vector of weights ω̂, we define the
(discrete) weighted total-variation (TV) by

‖β‖TV,ω̂ =

p∑
j=2

ω̂j |βj − βj−1|.

• If ω̂ ≡ 1, then we define the unweighted (simple) TV by

‖β‖TV,1 = ‖β‖TV =

p∑
j=2

|βj − βj−1|.
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Motivations for using TV

• Appropriate for multiple change-points estimation.
−→ Partitioning a nonstationary signal into several contiguous
stationary segments of variable duration [Harchaoui and

Lévy-Leduc (2010)].

• Widely used in sparse signal processing and imaging (2D)
[Chambolle et al. (2010)].

• Enforces sparsity in the discrete gradient, which is desirable
for applications with features ordered in some meaningful way
[Tibshirani et al. (2005)].
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Toy example: recovery of piecewise constant signal
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Part I

Learning the Intensity of Time Events with

Change-Points
[A., Gäıffas, Guilloux (2015), published in IEEE TIT]



Counting process: stochastic setup

• N = {N(t)}0≤t≤1 is a counting process.

• Doob-Meyer decomposition:

N(t) = Λ0(t)︸ ︷︷ ︸
compensator

+ M(t),︸ ︷︷ ︸
martingale

0 ≤ t ≤ 1.

• The intensity of N is defined by

λ0(t)dt = dΛ0(t) = P[N has a jump in [t, t + dt)|F(t)],

where F(t) = σ(N(s), s ≤ t).
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Piecewise constant intensity

• Assume that

λ0(t) =

L0∑
`=1

β0,`1(τ0,`−1,τ0,`](t), 0 ≤ t ≤ 1.

• {τ0,0 = 0 < τ0,1 < · · · < τ0,L0−1 < τ0,L0 = 1}: set of true
change-points.

• {β0,` : 1 ≤ ` ≤ L0}: set of jump sizes of λ0.

• L0 : number of true change-points.
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Assumption on observations

Data

We observe n i.i.d copies of N on [0, 1], denoted N1, . . . ,Nn.

• We define N̄n(I ) = 1
n

∑n
i=1 Ni (I ), Ni (I ) =

∫
I dNi (t), for any

interval I ⊂ [0, 1].

• This assumption is equivalent to observing a single process N
with intensity nλ0 (only used to have a notion of growing
observations with an increasing n).
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A procedure based on weighted TV penalization

• We introduce the least-squares functional

Rn(λ) =

∫ 1

0
λ(t)2dt − 2

n

n∑
i=1

∫ 1

0
λ(t)dNi (t),

[Reynaud-Bouret (2003, 2006), Gäıffas and Guilloux (2012)].

• Fix m = mn ≥ 1, an integer that shall go to infinity as
n→∞.

• We approximate λ0 in the set of nonnegative piecewise
constant functions on [0, 1] given by

Λm =
{
λβ =

m∑
j=1

βj ,mλj ,m : β = [βj ,m]1≤j≤m ∈ Rm
+

}
,

where

λj ,m =
√
m1Ij,m et Ij ,m =

( j − 1

m
,
j

m

]
.
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A procedure based on weighted TV penalization

• The estimator of λ0 is defined by

λ̂ = λβ̂ =
m∑
j=1

β̂j ,mλj ,m.

where β̂ is giving by

β̂ = argmin
β∈Rm

+

{
Rn(λβ) + ‖β‖TV,ω̂

}
.

• We consider the dominant term

ω̂j = O
(√

m logm

n
N̄n

(( j − 1

m
, 1
]))

.
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Estimator of change-points number

• The linear space Λm is endowed by the norm

‖λ‖ =
√∫ 1

0 λ
2(t)dt.

• Let Ŝ to be the support of the discrete gradient of β̂,

Ŝ =
{
j : β̂j ,m 6= β̂j−1,m for j = 2, . . . ,m

}
.

• Let L̂ to be the estimated number of change-points defined by:

L̂ = |Ŝ |.

Mokhtar Z. Alaya Modal’X, 11th May 2017 Supervised Learning with weighted TV 14 / 40



Oracle inequality with fast rate

The estimator λ̂ satisfies the following:

Theorem 1
Fix x > 0 and let the data-driven weights ω̂ defined as above. Assume
that L̂ satisfies L̂ ≤ Lmax. Then, we have

‖λ̂− λ0‖2 ≤ inf
β∈Rm

+

∥∥λβ − λ0

∥∥2
+ 6(Lmax + 2(L0 − 1)) max

1≤j≤m
ω̂2
j

+ C1

‖λ0‖∞
(
x + Lmax(1 + logm)

)
n

+ C2

m
(
x + Lmax(1 + logm)

)2

n2
,

with a probability larger than 1− Lmaxe
−x .
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Trade-off bias and variance

• Let ∆β,max = max1≤`,`′≤L0 |β0,` − β0,`′ |, be the maximum of
jump size of λ0.

Corollary

We have

‖λβ − λ0‖2 ≤
2L0∆2

β,max

m
.

• Our procedure has a fast rate of convergence of order

(Lmax ∨ L0)m logm

n
.

• An optimal tradeoff between approximation and complexity is
given by the choice:

If Lmax = O(m)⇒ m = O(n1/3).

If Lmax = O(1)⇒ m = O(n1/2).
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Consistency of change-points detection

• There is an unavoidable non-parametric bias of approximation.

• The approximate change-points sequence ( j`
m )0≤`≤L0 is defined as

the right-hand side boundary of the unique interval Ij`,m that
contains the true change-point τ0,`.

• τ0,` ∈
(

j`−1
m , j`m

]
, for ` = 1, . . . , L0 − 1, where j0 = 0 and jL0 = m by

convention.

t

τ0,`−1 τ0,` τ0,`+1

Ij`−1,m Ij`,m Ij`+1,m

τ̂`

• Let Ŝ = {ĵ1, . . . , ĵL̂} with ĵ1 < · · · < ĵL̂, and ĵ0 = 0 and ĵL̂+1 = m.

• We define simply

τ̂` =
ĵ`
m

for ` = 1, . . . , L̂.
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Consistency of change-points detection

• We can’t recover the exact position of two change-points if
they lie on the same interval Ij ,m.

Minimal distance between true change-points

Assume that there is a positive constant c ≥ 8 such that

min
1≤`≤L0

|τ0,` − τ0,`−1| >
c

m
.

−→ The change-points of λ0 are sufficiently far apart.
−→ There cannot be more than one change-point in the
“high-resolution” intervals Ij ,m.

• The procedure will be able to recover the (unique) intervals
Ij`,m, for ` = 0, . . . , L0, where the change-point belongs.
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Consistency of change-points detection

• ∆j ,min = min
1≤`≤L0−1

| j`+1

m
− j`

m
|, the minimum distance between

two consecutive terms in the change-points of λ0.

• ∆β,min = min
1≤q≤m−1

|β0,q+1,m − β0,q,m|, the smallest jump size

of the projection λ0,m of λ0 onto Λm.

• (εn)n≥1, a non-increasing and positive sequence that goes to
zero as n→∞.

Technical Assumptions

We assume that ∆j,min, ∆β,min and (εn)n≥1 satisfy

√
nm∆j,min∆β,min√

logm
→∞ and

√
nmεn∆β,min√

logm
→∞.
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Consistency of change-points detection

Theorem 2

Under the given Assumptions, and if L̂ = L0, then the change-points
estimators {τ̂1, . . . , τ̂L̂} satisfy

P
[

max
1≤`≤L0

|τ̂` − τ0,`| ≤ εn
]
→ 1, as n→∞.

• If m ≈ n1/3, Theorem 2 holds with
εn ≈ n−1/3,∆β,min = n−1/6 et ∆j ,min ≈ n−1/3.

• m ≈ n1/2, Theorem 2 holds with εn ≈ n−1/2,∆β,min ≈ n−1/6

et ∆j ,min ≈ n−1/2.
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Implementation: proximal operator

• We are interested in computing a solution

x? = argmin
x∈Rp

{g(x) + h(x)},

where g is smooth and h is simple (prox-calculable).

• The proximal operator proxh of a proper, lower
semi-continuous, convex function h : Rm → (−∞,∞], is
defined as

proxh(v) = argmin
x∈Rm

{1

2
‖v − x‖2

2 + h(x)
}
, for all v ∈ Rm.

• Proximal gradient descent (PGD) algorithm is based on

x (k+1) = proxεkh
(
x (k) − εk∇g(x (k))

)
.

[Daubechies et al. (2004) (ISTA) , Beck and Teboulle (2009)

(FISTA)]
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Proximal operator of the weighted TV penalization

• We have

β̂ = argmin
β∈Rm

+

{1

2
‖N− β‖2

2 + ‖β‖TV,ω̂

}
,

where N = [Nj ]1≤j≤m ∈ Rm
+ is given by

N =
(√

mN̄n(I1,m), . . . ,
√
mN̄n(Im,m

)
.

• Then
β̂ = prox‖·‖TV,ω̂

(N).

• Modification of Condat’s algorithm [Condat (2013)].

• If we have a feasible dual variable û, we can compute the
primal solution β̂, by Fenchel duality.

• The Karush-Kuhn-Tucker (KKT) optimality conditions
characterize the unique solutions β̂ and û.
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Algorithm 1: β̂ = prox‖·‖TV,ω̂
(N)

1. set k = k0 = k− = k+ ← 1; βmin ← N1 − ω̂2; βmax ← N1 + ω̂2; θmin ← ω̂2; θmax ← −ω̂2;

2. if k = m then

β̂m ← βmin + θmin;

3. if Nk+1 + θmin < βmin − ω̂k+2 then /* negative jump */

β̂k0
= · · · = β̂k− ← βmin; k = k0 = k− = k+ ← k− + 1;

βmin ← Nk − ω̂k+1 + ω̂k ; βmax ← Nk + ω̂k+1 + ω̂k ; θmin ← ω̂k+1; θmax ← −ω̂k+1;

4. else if Nk+1 + θmax > βmax + ω̂k+2 then /* positive jump */

β̂k0
= . . . = β̂k+

← βmax; k = k0 = k− = k+ ← k+ + 1;

βmin ← Nk − ω̂k+1 − ω̂k ; βmax ← Nk + ω̂k+1 − ω̂k ; θmin ← ω̂k+1; θmax ← −ω̂k+1;

5. else /* no jump */
set k ← k + 1; θmin ← Nk + ω̂k+1 − βmin; θmax ← Nk − ω̂k+1 − βmax;
if θmin ≥ ω̂k+1 then

βmin ← βmin +
θmin−ω̂k+1

k−k0+1
; θmin ← ω̂k+1; k− ← k;

if θmax ≤ −ω̂k+1 then

βmax ← βmax +
θmax+ω̂k+1

k−k0+1
; θmax ← −ω̂k+1; k+ ← k;

6. if k < m then
go to 3.;

7. if θmin < 0 then

β̂k0
= · · · = β̂k− ← βmin; k = k0 = k− ← k− + 1; βmin ← Nk − ω̂k+1 + ω̂k ;

θmin ← ω̂k+1; θmax ← Nk + ω̂k − vmax; go to 2.;

8. else if θmax > 0 then

β̂k0
= · · · = β̂k+

← βmax; k = k0 = k+ ← k+ + 1; βmax ← Nk + ω̂k+1 − ω̂k ;

θmax ← −ω̂k+1; θmin ← Nk − ω̂k − θmin; go to 2.;

9. else

β̂k0
= · · · = β̂m ← βmin +

θmin
k−k0+1

;
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Real data: RNA-seq

• RNA-seq can be modelled mathematically as replications of
an inhomogeneous counting process with a piecewise constant
intensity [Shen and Zhang (2012)].

• We applied our method to the sequencing data of the breast
tumor cell line HCC1954 7.72 million reads) and its reference
cell line BL1954 (6.65 million reads) [Chiang et al. (2009)].

A zoom into the sequence of reads for tumor data.
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Real data

Zoom into the weighted (left) and unweighted (right) TV
estimators applied to the tumor data.
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Part II

Binarsity: a penalization for one-hot encoded

features



Features binarization

• Supervised training dataset (xi , yi )i=1,...,n containing features
xi = (xi ,1, . . . , xi ,p)> ∈ Rp and labels yi ∈ Y ⊂ R, that are
i.i.d.

• We denote X = [xi ,j ]1≤i≤n;1≤j≤p the n × p features matrix.

• Let X •,j be the j-th feature column of X .

• The binarized matrix XB is a matrix with an extended
number d > p of columns (only binary).

• The j-th column X •,j is replaced by a number dj ≥ 2 of
columns XB

•,j ,1, . . . ,X
B
•,j ,dj containing only zeros and ones.

• The i-th row of XB is written

xBi = (xBi ,1,1, . . . , x
B
i ,1,d1

, . . . , xBi ,p,1, . . . , x
B
i ,p,dp)> ∈ Rd .

Mokhtar Z. Alaya Modal’X, 11th May 2017 Supervised Learning with weighted TV 26 / 40



Features binarization

• If X•,j takes values (modalities) in the set {1, . . . ,Mj} with
cardinality Mj , we take dj = Mj , and use a binary coding of
each modality by defining

xBi ,j ,k =

{
1, if xi ,j = k,

0, otherwise,

• If X•,j is quantitative, then dj we consider a partition of
intervals Ij ,1, . . . , Ij ,dj for the range of values of X •,j and define

xBi ,j ,k =

{
1, if xi ,j ∈ Ij ,k ,

0, otherwise,
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Features binarization

• A natural choice of intervals is given by the quantiles, namely
we can typically choose Ij ,k =

(
qj(

k−1
dj

), qj(
k
dj

)
]

for

k = 1, . . . , dj .

• To each binarized feature XB
•,j ,k corresponds a parameter θj ,k .

• The parameters associated to the binarization of the j-th
feature is denoted θj ,• = (θj ,1 · · · θj ,dj )>.

• The full parameters vector of size d =
∑p

j=1 dj , is simply

θ = (θ>1,• · · · θ>p,•)> =
(
θ1,1 · · · θ1,d1 θ2,1 · · · θ2,d2 · · · θp,1 · · · θp,dp

)>
.
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Features binarization

• The one-hot-encodings satisfy
∑dj

k=1 X i ,j ,k = 1 for all j ,
meaning that the columns of each block sum to 1n.
→ XB is not of full rank by construction.

• Some of the raw features X •,j might not be relevant for the
prediction task, so we want to select raw features from their
one-hot encodings.
→ block-sparsity in θ.
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Binarsity

• In our penalization term, we impose
∑dj

k=1 θj ,k = 0 for all
j = 1, . . . , p (sum-to-zero-constraint).

• We remark that within each block, binary features are ordered.
→ We use a within block weighted total-variation penalization

p∑
j=1

‖θj ,•‖TV,ω̂j,•

where

‖θj ,•‖TV,ω̂j,• =

dj∑
k=2

ω̂j ,k |θj ,k − θj ,k−1|,
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Binarsity

• We therefore introduce the following new penalization called
binarsity

bina(θ) =

p∑
j=1

( dj∑
k=2

ŵj ,k |θj ,k − θj ,k−1|+ δ1(θj ,•)
)
,

where the indicator function

δ1(u) =

{
0 if 1>u = 0,

∞ otherwise.

• If a raw feature j is statistically not relevant for predicting the
labels, then the full block θj ,• should be zero.

• If a raw feature j is relevant, then the number of different
values for the coefficients of θj ,• should be kept as small as
possible, in order to balance bias and variance.
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Weights in Binarsity

We consider the following data-driven weighted version of Binarsity
given by

ω̂j ,k = O
(√

log p

n
π̂j ,k

)
,

where

π̂j ,k =
#
({

i = 1, . . . , n : xi ,j ∈
(
qj
(
k
dj

)
, qj(1)

]})
n

.

π̂j ,k corresponds to the proportion of 1s in the sub-matrix obtained
by deleting the first k columns in the j-th binarized block matrix.
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Generalized linear models

• The conditional distribution of Yi given Xi = xi is assumed to
be from one parameter exponential family

y |x 7→ f 0(y |x) = exp
(ym0(x)− b(m0(x))

ϕ
+ c(y)

)
,

• The functions b(·) and c(·) are known, while the natural
parameter function m0(x) is unknown.

• We have
E[Yi |Xi = xi ] = b′(m0(xi )).

• Logistic and probit regression for binary data or multinomial
regression for categorical data, Poisson regression for count
data, etc ...
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Generalized linear models + binarsity

• We consider the empirical risk

Rn(θ) =
1

n

n∑
i=1

`
(
yi ,mθ(xi )

)
,

where mθ(xi ) = θ>xBi .

• ` is the generalized linear model loss function and is given by

`
(
y , y ′) = −yy ′ + b(y ′).

• Our estimator of m0 is given by m̂ = mθ̂, where θ̂ is the
solution of the penalized log-likelihood problem

θ̂ ∈ argmin
θ∈Rd

{
Rn(θ) + bina(θ)

}
.
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Proximal algorithm of weighted binarsity

• Since Binarsity is separable by blocks, we have(
proxbinaω̂(θ)

)
j ,• = prox(‖·‖TV,ω̂j,•+δHj

)(θj ,•),

for all j = 1, . . . , p.

• Algorithm 2 expresses proxbinaω̂ based on the proximal
operator of the weighted TV penalization.
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Toy example (n = 1000, p = 2, d1 = d2 = 100)
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Take Home Message

• We introduce a data-driven weighted total-variation
penalizations for two problems: change-points detection and
generalized linear models with binarized features.

• For each procedure, we give: theoretical guaranties by proving
non-asymptotic oracles inequalities for the prediction error and
algorithms that efficiently solve the studied convex problems.
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Works in Progress

• With S. Bussy and A. Guilloux, we study the estimation
problem of high-dimensional Cox model, with covariables
having multiple cut-points, using binarsity penalization.

• With T. Allart, we study the complete TV penalty, which is
more stable than the simple TV penalization
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Thank you!
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