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Matrix completion is ...

• Task: given a partially observed data matrix X , predict the
unobserved entries

• Large matrices: # rows, # columns ≈ 105, 106.

• Very under-determined (often only 1-2% observed)

• Application to recommender systems, system identification,
image processing, microarray data, etc.
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Motivations: recommendation systems, Netflix prize

• A popular example is the Netflix challenge (2006-2009)

• Dataset: 480K users, 18K movies, 100M ratings

• Only 1.1% of the matrix is filled!
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Some issues ...

• In general, we cannot infer missing ratings without any other
information.

• This problem is under-determined, more unknown than
observations.

• Low-rank assumption: fill matrix such that rank is minimum.
→ A few factors explain most of the data.

Completion via rank minimization

minimizeW rank(W ) s. t. Wij = Xij︸︷︷︸
observed entries

, (i , j) ∈ Ω︸︷︷︸
sampling set

.

• Non-convex problem and combinatorially NP-hard!!
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Convex formulation of the rank minimization problem

rank(X ) =

min dim(X )∑
i=1

1(σi (X )>0) = ‖σ(X )‖0.

Replace `0 by `1 [Fazel (2002), Srebro et al. (2005); Candes and
Tao (2010); Recht et al. (2010); Negahban and Wainwright
(2011); Klopp (2014)]:

‖X‖∗ =

min dim(X )∑
i=1

(σi (X )).

Hence temping to consider

Nuclear norm minimization:

minimizeW ‖W ‖∗ s. t. Wij = Xij︸︷︷︸
observed entries

, (i , j) ∈ Ω︸︷︷︸
sampling set

.

This is a convex problem !
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Collective matrix completion: motivations

• Data is often obtained from a collection of matrices
X = (X 1, . . . ,XV ).

X =

 · · ·
X 1 X 2 · · · XV


• It may be beneficial to leverage all the available user data by various

sources.

• Cold-Start problem: in recommender systems, when a new user has
no rating it is impossible to predict his ratings.

• Shared structure among the sources can be useful to get better
predictions.
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Collective matrix completion: model setup

• Each source view X v ∈ Rdu×dv and D =
∑V

v=1 dv .

• We assume that the distribution of for each source X v

depends on the matrix of parameters Mv .

• Model: let Bv
ij be independent Bernoulli random variables

and independent from X v
ij , with parameter πvij .

Y v
ij = Bv

ijX
v
ij .

• We can think of the Bv
ij as masked variables.

• πvij = probability to observe the (i , j)-th entry of the v -th
source.
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Collective matrix completion: sampling scheme

• We consider general sampling model where we only assume:

Assumption 1: There exists a positive constant 0 < p < 1 s.t.
minv∈[V ] min(i ,j)∈[du ]×[dv ] π

v
ij ≥ p.

[Klopp (2015); Klopp et al. (2015)]

• πvi· =
∑dv

j=1 π
v
ij the probability to observe an element from the

i-th row of X v .

• πv·j =
∑du

i=1 π
v
ij the probability to observe an element from the

j-th column of X v .

• Let πi· = maxv∈[V ] π
v
i·, π·j =

∑V
v=1 πi·, and

max
(i ,j)∈[du ]×[dv ]

(πi·, π·j) ≤ µ.
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Exponential family noise

• Heterogeneous sources: (ratings), (counting: number of
clicks) (binomial: like/dislike)

• General framework: natural exponential family

X v
ij |Mv

ij ∼ hv (X v
ij ) exp

(
X v
ij M

v
ij − G v (Mv

ij )
)
.

[Gunasekar et al. (2014); Cao and Xie (2016); Lafond (2015)]

• Many distributions belong to the exponential family:
Gaussian, binomial, Poisson, exponential, etc.

Assumption 2: - The distribution of X v
ij has sub-exponential tail.

- Strong convexity of the log-partition function G v .
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Exponential family noise: estimation procedure

• Given observations Y = (Y 1, . . . ,Y V ), we write the negative
log-likelihood as

LY(W) = − 1

duD

∑
v∈[V ]

∑
(i ,j)∈[du ]×[dv ]

Bv
ij

(
Y v
ij W

v
ij − G v (W v

ij )
)
.

• The nuclear norm penalized estimator M̂ of M is defined as
follows:

M̂ = (M̂
1
, . . . , M̂

V
) = argmin

‖W‖∞≤γ
LY(W) + λ‖W‖∗,

• λ > 0 is a positive regularization parameter that balances the
trade-off between model fit and privileging a low-rank solution.
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Exponential family noise: theoretical guarantee

Theorem [A., Klopp 2018]

Assume that Assumptions 1 and 2 hold and

λ ≈
√
µ+ (log(du ∨ D))3/2

duD
.

Then, with high probability, one has

1

duD
‖M̂−M‖2

F .
rank(M)(µ+ (log(du ∨ D))3/2)

p2duD
.
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Exponential family noise: theoretical guarantee

• Uniform sampling: If c1/(dudv) ≤ πvij ≤ c2/(dudv ), then

1

duD
‖M̂−M‖2

F .
rank(M)

p(du ∧ D)
.

• We denote n =
∑

v∈[V ]

∑
(i ,j)∈[du ]×[dv ] π

v
ij , the expected

number of observations.

• Sample complexity:

n & rank(M)(du ∨ D).
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Example: 1-bit matrix completion

• 1-bit matrix completion: Y ∈ {+1,−1} with probability
f (M) for some link-function f [ Davenport et al. (2014);
Klopp et al. (2015); Alquier et al. (2017)]

• Klopp et al. (2015) obtained the rate
rank(M)(d ∨ D) log(d ∨ D)/n as the upper bound and
rank(M)(d ∨ D)/n as the lower bound for 1-bit matrix
completion.

Corollary[A., Klopp 2018]

1

dD
‖M̂−M‖2

F .
rank(M)(d ∨ D)

n
,

• Answer the important theoretical question: what is the exact
minimax rate of convergence for 1-bit matrix completion
which was previously known up to a logarithmic factor.

• Sum-norm penalization:
∑

v∈[V ] ‖M
v‖∗
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Distribution-free setting

• We do not assume any specific model for the observations.

• We consider the risk of estimating X v with a loss function `v ,

• We focus on non-negative loss functions that are Lipschitz:

Assumption 3: We assume that the loss function `v (y , ·) is
ρv -Lipschitz in its second argument:
`v (y , x)− `v (y , x ′)| ≤ ρv |x − x ′|.

• Examples: hinge loss with `v (y , y ′) = max(0, 1− yy ′), logistic
loss with `v (y , y ′) = log(1 + exp(−yy ′)), etc.
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Distribution-free setting: estimation procedure

• Goodness-of-fit term:

RY(W) =
1

duD

∑
v∈[V ]

∑
(i ,j)∈[du ]×[dv ]

Bv
ij `

v (Y v
ij ,W

v
ij ).

• We define the oracle as:

?
M =

( ?
M1, . . . ,

?
MV

)
= argmin
‖W‖∞≤γ

R(W),

where R(W) = E[RY(W)].

• For a tuning parameter Λ > 0, the nuclear norm penalized
estimator M̂ is defined as

M̂ ∈ argmin
‖W‖∞≤γ

{
RY(W) + Λ‖W‖∗

}
.
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Distribution-free setting: theoretical guarantee

• We denote by ‖W‖2
Π,F =

∑
v

∑
(i ,j) π

v
ij (W

v
ij )2.

Assumption 4: Assume that for every W with ‖W‖∞ ≤ γ, one

has R(W)− R(
?

M) & 1
duD
‖W −

?
M‖2

Π,F .

• Assumption 4 is called “Bernstein” condition (Mendelson,
2008; Bartlett et al., 2004; Alquier et al., 2017; Elsener and
van de Geer, 2018).

Theorem [A. Klopp 2018]

Let Assumptions 1, 3, and 4 hold and
Λ ≈ (

√
µ+

√
log(du ∨ D))/(duD). Then, with probability , one has

R(M̂)− R(
?

M) .
µ+ log(du ∨ D)

pduD
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Toy example using CVXPY package

V du d1 d2 d3 M1(rank = 5) M2(rank = 10) M3(rank = 15)

3 500 100 200 300 N (−2, 0.5) N (1, 0.5) N (2, 0.5)

M1 M2 M3 M Mcold

% observations 10% 20% 30% 23.29% 18.69%

CMC SNN Cold-Start M̂1 M̂2 M̂3

RMSE 0.223 0.224 0.220 0.198 0.194 0.311

observed + fitted collective
matrix.

observed + fitted cold collective
matrix.

CVXPY [Diamond and S. Boyd (2016)]
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Take Home Message

• First theoretical guarantees on the case of noisy collective MC.

• Collective approach provides faster rate of convergences in the
case of joint low-rank structure.

• Exact minimax optimal rate of convergence for 1-bit matrix
completion which was known upto a logarithmic factor.

• On going work: algorithmic study with numerical experiments.

Thank you.
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