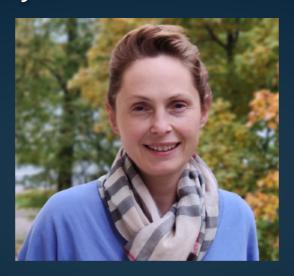
Collective Matrix Completion

Mokhtar Z. Alaya

Joint work with:



Olga Klopp ESSEC & CREST

MLMDA Seminar, Borelli Center June, 2022

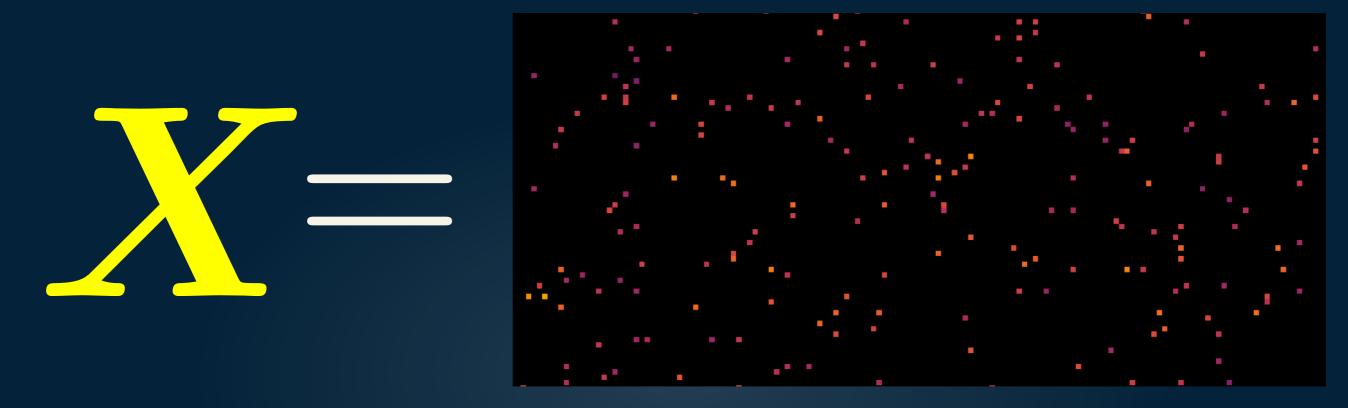
Outline

1. Overview of matrix completion

2. Collective matrix completion

3. Numerical experiments

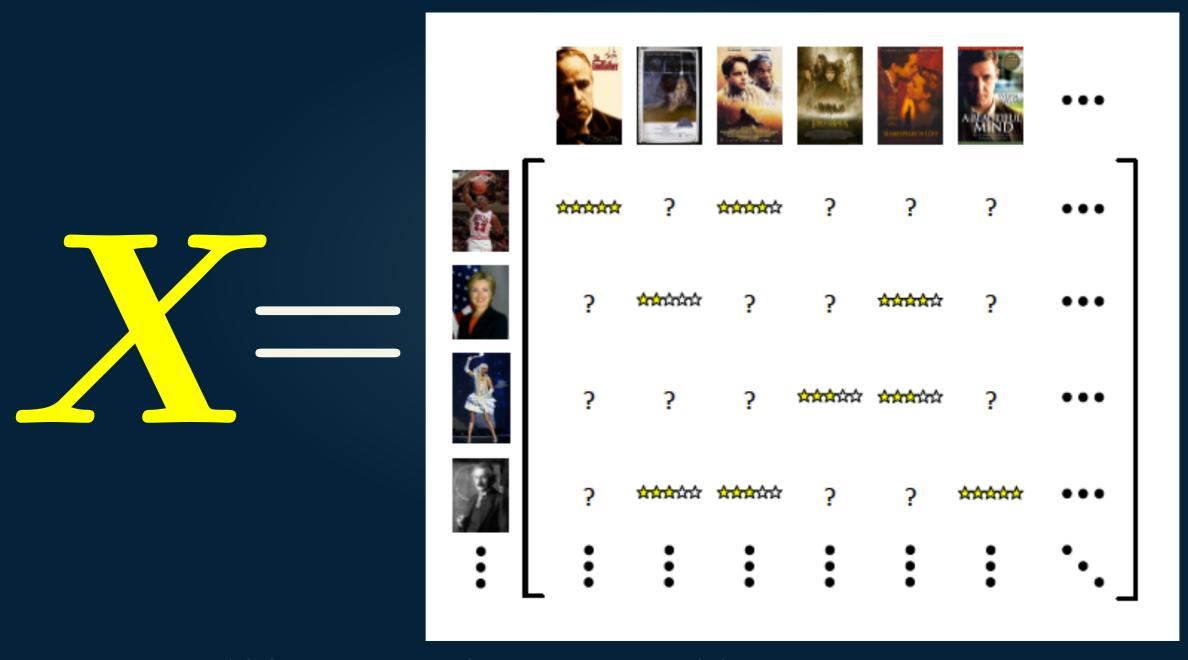
Matrix completion is ...



- Task: given a partially observed data matrix X, predict the unobserved entries.
- Application to recommender systems, system identification, image processing, microarray data, etc.

Recommender systems, Netflix prize

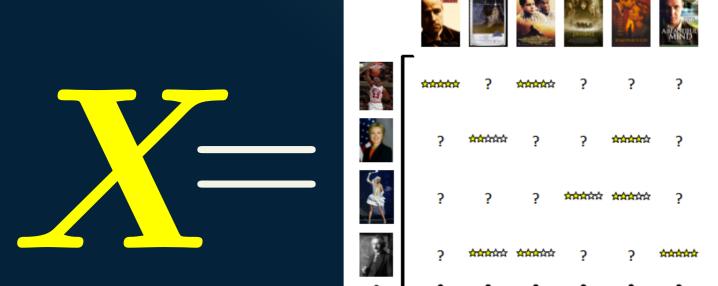
• A popular example is the Netflix challenge (2006-2009).



- Dataset: 480K users, 18K movies, 100M ratings.
- Only 1,1% of the matrix is filled!

Some issues ...

- In general, we cannot infer missing ratings without any other information.
- This problem is under-determined, more unknown than observations (100M << 8.64M for Netflix).
- Low-rank assumption: fill matrix such that its rank is minimum.
- A few factors explain most of the data.



Low rank minimization

• Denote by Ω the set of entries of the matrix X that have been observed: we know the values X_{ij} for all $(i,j)\in\Omega$.

$$\underset{\mathbf{W}}{\text{minimize rank}}(\mathbf{W}) \text{ s. t. } \mathbf{W}_{ij} = \underbrace{X_{ij}}_{\text{observed entries}}, \forall (i,j) \in \underbrace{\Omega}_{\text{sampling set}}$$

Or a slightly weaker version

$$\min_{\mathbf{W}} \max(\mathbf{W}) \text{ s. t. } \sum_{(i,j)\in\Omega} (X_{ij} - W_{ij})^2 \leq \delta.$$

Or the regularization version

minimize
$$\sum_{(i,j)\in\Omega} (X_{ij} - W_{ij})^2 + \lambda \operatorname{rank}(\mathbf{W}).$$

Low rank minimization

Non-convex problem and combinatorially NP-hard!

$$\operatorname{rank}(\boldsymbol{X}) = \|\sigma(\boldsymbol{X})\|_0 = \sum_{i=1}^{\min \dim(\boldsymbol{X})} \underbrace{\mathbb{1}_{(\sigma_i(\boldsymbol{X})>0)}}_{i^{th} \text{ largest singular value}}.$$

• Replace the ℓ_0 pseudo-norm by the ℓ_1 -norm [Fazel ('02), Srebro et al ('05), Candès and Tao ('10), Negahban and Wainwright ('11), Davenport et al. ('14), Klopp ('14 and '15),].

Nuclear / trace / 1-Schatten norm:

$$\|\mathbf{X}\|_* = \|\sigma(\mathbf{X})\|_1 = \sum_{i=1}^{\min\dim(\mathbf{X})} \sigma_i(\mathbf{X}).$$

Nuclear norm minimization

• Hence temping to consider the nuclear norm minimization problem:

$$\underset{\boldsymbol{W}}{\text{minimize}} \|\boldsymbol{W}\|_* \text{ s. t. } \sum_{(i,j)\in\Omega} (X_{ij} - W_{ij})^2 \leq \delta.$$

Or equivalently the regularization / Lagrangian formulation:

$$\underset{\boldsymbol{W}}{\text{minimize}} \frac{1}{2} \sum_{(i,j) \in \Omega} (X_{ij} - W_{ij})^2 + \lambda \| \boldsymbol{W} \|_*.$$

• This is convex problem.

Motivations of collective MC

Data is often obtained from a collection of source matrices:

$$\mathcal{X} = (X^1, \dots, X^V)$$
 $\mathcal{X} = \begin{pmatrix} \mathbf{X}^1 & \mathbf{X}^2 & \mathbf{X}^V \end{pmatrix}$

- Cold-Start problem: in recommender systems, when a new user has no rating it is impossible to predict his ratings.
- Shared structure among the sources can be useful to get better predictions.

Collective MC: setup

- ullet Each source view $oldsymbol{X}^v \in \mathbb{R}^{d_u imes d_v}$ and $D = \sum_{v=1}^v d_v$.

independent from X^{v}_{ij} with parameter π^{v}_{ij} . Setting:

$$Y^v = B^v \odot X^v$$
 that is $Y^v_{ij} = B^v_{ij} X^v_{ij}$.

Collective MC: sampling scheme

 We consider general sampling model where we only assume that each entry is observed with a positive probability.

Assumption 1

There exists a positive constant 0 such that

$$\min_{v \in [V]} \min_{(i,j) \in [d_u] \times [d_v]} \pi_{ij}^v \ge p.$$

[Klopp('15), Klopp et al. ('15), Lafond ('15), Cai and Zou ('16)]

Collective MC: sampling scheme

• Let π_i^v (resp. π^v) the probability of sampling a coefficient from i-th row (resp. j-th column) of X^v . Namely:

$$\pi_{iullet}^v=\sum_{j\in[d_v]}\pi_{ij}^v$$
 and $\pi_{ullet}^v=\sum_{i\in[d_u]}\pi_{ij}^v.$ Let $\pi_{iullet}=\sum_{v\in[V]}\pi_{iullet}^v$

Assumption 2

There exists a positive constant μ such that

$$\max_{v \in [V]} \max_{(i,j) \in [d_u] \times [d_v]} (\pi_{i \bullet}, \pi^v_{\bullet j}) \le \mu.$$

[Klopp('15), Klopp et al. ('15), Lafond ('15), Cai and Zou ('16)]

Case I: Exponential family noise

• We assume that the distribution of for each source X^v depends on the matrix of parameters M^v and satisfied a natural exponential family [Gunasekar et al. ('14); Cao and Xie ('16); Lafond ('15)]

$$X_{ij}^{v}|M_{ij}^{v} \sim f_{h^{v},G^{v}}(X_{ij}^{v}|M_{ij}^{v}) = h^{v}(X_{ij}^{v}) \exp(X_{ij}^{v}M_{ij}^{v} - G^{v}(M_{ij}^{v})).$$

Assumption 3

Assume that $G^v(\cdot)$ is twice differentiable and there exits two constants L^2_γ, U^2_γ

$$\sup_{\eta \in [-\gamma - \frac{1}{K}, \gamma + \frac{1}{K}]} (G^v)''(\eta) \le U_\gamma^2 \quad \text{ and } \inf_{\eta \in [-\gamma - \frac{1}{K}, \gamma + \frac{1}{K}]} (G^v)''(\eta) \ge L_\gamma^2$$

for some K > 0.

Exponential family noise: estimation procedure of $\mathcal{M} = (M^1, \dots, M^V)$

• Given the observations $\mathbf{Y} = (\mathbf{Y}^1, \dots, \mathbf{Y}^V)$, the normalized negative log-likelihood write as, for any $\mathbf{W} = (\mathbf{W}^1, \dots, \mathbf{W}^V) \in \mathbb{R}^{d_u \times D}$,

$$\mathcal{L}_{\mathcal{Y}}(\mathcal{W}) = -\frac{1}{d_u D} \sum_{v \in [V]} \sum_{(i,j) \in [d_u] \times [d_v]} \frac{B_{ij}^v \left(Y_{ij}^v W_{ij}^v - G^v(W_{ij}^v) \right)}{(Y_{ij}^v W_{ij}^v)}$$

ullet The nuclear norm penalized estimator $\overline{\mathcal{M}}$ of $\overline{\mathcal{M}}$ is defined as:

$$\widehat{\mathcal{M}} = (\widehat{M}^1, \dots, \widehat{M}^V) = \underset{\mathcal{W} \in \mathscr{C}_{\infty}(\gamma)}{\operatorname{argmin}} \mathscr{L}_{\mathcal{Y}}(\mathcal{W}) + \lambda \|\mathcal{W}\|_*$$

where
$$\mathscr{C}_{\infty}(\gamma) = \{ \mathcal{W} \in \mathbb{R}^{d_u \times D} : \|\mathcal{W}\|_{\infty} \leq \gamma \}.$$

[Foygel et al. ('10), Salakhutdinov and Srebro ('10)]

Exponential family noise: theoretical guarantee

Upper bound on the rescaled Frobenius estimation risk:

Theorem [A., Klopp 2019]

Assume that Assumptions 1, 2 and 3 hold and

$$\lambda = \mathcal{O}\left(\frac{(U_{\gamma} \vee K)(\sqrt{\mu} + (\log(d_u \vee D))^{3/2})}{d_u D}\right).$$

Then, with probability exceeding $1 - 4/(d_u + D)$ one has,

$$\frac{1}{d_u D} \|\widehat{\mathcal{M}} - \mathcal{M}\|_F^2 \lesssim \frac{\operatorname{rank}(\mathcal{M})}{p^2 d_u D} \left(\gamma^2 + \frac{(U_\gamma \vee K)^2}{L_\gamma^4}\right) \left(\mu + \log^3(d_u \vee D)\right)$$

$$\lesssim \frac{\operatorname{rank}(\mathcal{M})\mu}{p^2 d_u D}.$$

Exponential family noise: remarks

ullet For a close uniform sampling distribution, that is $c_1 p \leq \pi^v_{ij} \leq c_2 p$

$$\frac{1}{d_u D} \|\widehat{\mathcal{M}} - \mathcal{M}\|_F^2 \lesssim \frac{\operatorname{rank}(\mathcal{M})}{p(d_u \wedge D)}.$$

 Rate of convergence achieved by our estimator is faster compared to the penalization by the sum-nuclear-norm since

$$\operatorname{rank}(\mathcal{M}) \leq \sum_{v=1}^{V} \operatorname{rank}(\mathcal{M}^{v}).$$

• For small estimation error, one can choose $p \geq \operatorname{rank}(\mathcal{M})/(d_u \wedge D)$.

This implies

$$n \gtrsim \operatorname{rank}(\mathcal{M})(d_u \vee D).$$

where
$$n = \sum_{v \in [V]} \sum_{(i,j) \in [d_u] \times [d_v]} \pi_{ij}^v$$
 the expected number of observations

Case 2: Distribution-free-setting

- We do not assume any specific model for the observations.
- We consider the risk of estimating X^v with a loss function $\ell^v(\cdot,\cdot)$.

Assumption 4

For every v the loss function $\ell^v(y,\cdot)$ is $\rho_{v\text{-Lipschitz}}$ in its second argument:

$$|\ell^v(y,x) - \ell^v(y,x')| \le \rho_v |x-x'|.$$

Distribution-free-setting: estimation • For any matrix $\mathbf{Q}=(\mathbf{Q}^1,\dots,\mathbf{Q}^V)$, we define the empirical risk as

$$R \mathbf{y}(\mathbf{Q}) = \frac{1}{d_u D} \sum_{v \in [V]} \sum_{(i,j) \in [d_u] \times [d_v]} B_{ij}^v \ell^v(Y_{ij}^v, \mathbf{Q}_{ij}^v)$$

• We define the oracle as:

$$oldsymbol{\dot{M}}^{\star} = (oldsymbol{\dot{M}}^{1}, \dots, oldsymbol{\dot{M}}^{V}) = \operatorname*{argmin}_{\mathcal{Q} \in \mathscr{C}_{\infty}(\gamma)} R(\mathcal{Q})$$

where
$$R(\mathbf{Q}) = \mathbb{E}[R_{\mathcal{Y}}(\mathbf{Q})].$$

• We consider excess risk $R(\mathcal{M}) - R(\mathcal{M})$.

Distribution-free-setting: estimation procedure

ullet For a tuning parameter $\Lambda>0\,$ the nuclear norm penalized estimator reads as

$$\widehat{\mathcal{M}} \in \underset{\mathbf{Q} \in \mathscr{C}_{\infty}(\gamma)}{\operatorname{argmin}} \left\{ R \, \, \mathbf{y}(\mathbf{Q}) + \Lambda \| \mathbf{Q} \|_{*} \right\}$$

Assumption 5

There exists a constant
$$\varsigma > 0$$
 such that for every $\mathcal{Q} \in \mathscr{C}_{\infty}(\gamma)$, one has
$$R(\mathcal{Q}) - R(\mathcal{M}) \geq \frac{\varsigma}{pd_u D} \|\mathcal{Q} - \mathcal{M}\|_F^2$$

• Assumption 4 is called "Bernstein" condition [Mendelson (2008); Bartlett et al., (2004); Alquier et al., (2017); Elsener and van de Geer, (2018)].

Distribution-free-setting: theoretical gurantee

Theorem [A., Klopp 2019]

Assume that Assumptions 1, 2, 4 and 5 hold and set $\rho = \max_{v \in [V]} \rho_v$. Let

$$\Lambda = \mathcal{O}\left(\frac{\rho(\sqrt{\mu} + \sqrt{\log(d_u \vee D)})}{d_u D}\right).$$

Then, with probability exceeding $1 - 4/(d_u + D)$ one has,

$$R(\widehat{\mathcal{M}}) - R(\widehat{\mathcal{M}}) \lesssim \frac{\operatorname{rank}(\widehat{\mathcal{M}})}{p} \frac{(\rho^2 + \rho^{3/2} \sqrt{\gamma/\varsigma})(\mu + \log(d_u \vee D))}{d_u D}$$

3. Numerical Experiments

Optimization of $\widehat{\mathbf{M}} = (\widehat{\mathbf{M}}^1, \dots, \widehat{\mathbf{M}}^V) = \underset{\mathbf{W} \in \mathscr{C}_{\infty}(\gamma)}{\operatorname{argmin}} \mathscr{L}_{\mathbf{V}}(\mathbf{W}) + \lambda \|\mathbf{W}\|_*$

- Proximal gradient (PG): [Beck and Teboulle ('09), Cai et al. ('09), Mazumder et al., ('10); Yao and Kwok ('15)]
- The PG generates a sequence of estimates

$$\mathbf{\mathcal{W}}_{t+1} = \operatorname{prox}_{\frac{\lambda}{L}\|\cdot\|_*}(\mathbf{\mathcal{Z}}_t), \text{ where } \mathbf{\mathcal{Z}}_t = \mathbf{\mathcal{W}}_t - \frac{1}{L}\nabla \mathcal{L}_{\mathbf{\mathcal{Y}}}(\mathbf{\mathcal{W}}_t)$$

ullet Assume a singular value decomposition $\mathcal{W} = \mathcal{U} \Sigma \mathcal{V}^{ op}$, then one has

$$\operatorname{prox}_{\frac{\lambda}{L}\|\cdot\|_*}(\boldsymbol{\mathcal{W}}) = \operatorname{SVT}_{\lambda/L}(\boldsymbol{\mathcal{W}}) = \boldsymbol{\mathcal{U}}\operatorname{diag}((\sigma_1 - \lambda/L)_+, \dots, (\sigma_r - \lambda/L)_+)\boldsymbol{\mathcal{V}}^\top$$

[Cai et al. ('10)]

Power method to reduce complexity

- ullet To compute ${\mathcal W}_{t+1}$ we need to perform an SVD of ${\mathcal Z}_t$ ${\mathcal O}((d_u \wedge D)d_u D)$
- We do not require to do a full SVD only a fewer k_t singular values of \mathbf{z}_t which are large than λ/L .
- As W_t converges to a low rank solution then k_t will be small during iterations.
- Yao and Kwok ('15)] showed the following result:

$$\mathrm{SVT}_{\lambda/L}(\boldsymbol{z}_t) = \boldsymbol{\mathcal{Q}}\mathrm{SVT}_{\lambda/L}(\boldsymbol{\mathcal{Q}}^{\top}\boldsymbol{z}_t) \ \boldsymbol{\mathcal{O}}(k_t d_u D)$$

```
Algorithm 2: Power Method: PowerMethod(\mathcal{Z}, \mathcal{R}, \epsilon)

1. input: \mathcal{Z} \in \mathbb{R}^{d_u \times D}, initial \mathcal{R} \in \mathbb{R}^{D \times k} for warm-start, tolerance \delta;

2. initialize \mathcal{W}_1 = \mathcal{Z}\mathcal{R};

3. for t = 1, 2, ..., do

4. Q_{t+1} = QR(\mathcal{W}_t); // QR denotes the QR factorization

5. W_{t+1} = \mathcal{Z}(\mathcal{Z}^{\top}Q_{t+1});

6. if \|Q_{t+1}Q_{t+1}^{\top} - Q_tQ_t^{\top}\|_F \leq \delta then

C_{t+1} = C_{t+1} =
```

Approximate SVT based on power method

```
Algorithm 3: Approximate SVT: Approx-SVT(\mathcal{Z}, \mathcal{R}, \lambda, \delta)
```

- 1. input: $\mathbf{Z} \in \mathbb{R}^{d_u \times D}$, $\mathbf{R} \in \mathbb{R}^{D \times k}$, thresholds λ and δ ;
- 2. $\mathcal{Q} = \operatorname{PowerMethod}(\mathcal{Z}, \mathcal{R}, \delta);$ // Approximate the top k_t left singular values

3.
$$[\mathcal{U}, \mathbf{\Sigma}, \mathcal{V}] = \mathrm{SVD}(\mathcal{Q}^{\top} \mathcal{Z})_{\dagger}$$

- 4. $\mathcal{U} = \{u_i | \sigma_i > \lambda\};$
- 5. $\mathcal{V} = \{v_i | \sigma_i > \lambda\};$
- 6. $\Sigma = \max(\Sigma \lambda \mathcal{I}, \mathbf{0}); / \uparrow (\mathcal{I} \text{ denotes the identity matrix})$
- 7. return QU, Σ, V .

[Yao and Kwok ('15)]

// Much smaller and less (exact) SVT performed on $\mathcal{Q}^{\top}\mathcal{Z}$

Algorithm 4: PLAIS-Impute for Collective Matrix Completion

- 1. **input:** observed collective matrix $\mathbf{\mathcal{Y}}$, parameter λ , decay parameter $\nu \in (0,1)$, tolerance ε ;
- 2. $[\mathcal{U}_0, \lambda_0, \mathcal{V}_0] = \text{rank-1 SVD}(\mathcal{Y});$
- 3. initialize c = 1, $\delta_0 = \| \mathbf{\mathcal{Y}} \|_F$, $\mathbf{\mathcal{W}}_0 = \mathbf{\mathcal{W}}_1 = \lambda_0 \mathbf{\mathcal{U}}_0 \mathbf{\mathcal{V}}_0^\top$;
- 5. $\delta_t = \nu^t \delta_0;$ $\lambda_t = \nu^t (\lambda_0 \lambda) + \lambda;$ // Regularization is dynamically reduced by continuation strategy
- $\theta_t = (c-1)/(c+2);$
- $\mathbf{Q}_t = (c-1)/(c+2);$ $\mathbf{Q}_t = (1+\theta_t)\mathbf{W}_t \theta_t\mathbf{W}_{t-1};$ //Acceleration (FISTA)
- $oldsymbol{\mathcal{Z}}_t =
 abla \mathscr{L}_{oldsymbol{\mathcal{Y}}}(oldsymbol{\mathcal{Q}}_t));$ 9.
- $\mathbf{\mathcal{V}}_{t-1} = \mathbf{\mathcal{V}}_{t-1} \mathbf{\mathcal{V}}_t(\mathbf{\mathcal{V}}_t^{\top}\mathbf{\mathcal{V}}_{t-1})$ $\mathbf{\mathcal{R}}_t = \mathrm{QR}([\mathbf{\mathcal{V}}_t, \mathbf{\mathcal{V}}_{t-1}]);$ //Warm-start 10.
- 11.
- $[\mathcal{U}_{t+1}, \mathbf{\Sigma}_{t+1}, \mathcal{V}_{t+1}] = \mathsf{Approx-SVT}(\mathcal{Z}_t, \mathcal{R}_t, \lambda_t, \delta_t);$ //Approximate SVT 12.
- if $\mathscr{F}_{\lambda}(\mathcal{U}_{t+1}\Sigma_{t+1}\mathcal{V}_{t+1}^{\top}) > \mathscr{F}_{\lambda}(\mathcal{U}_{t}\Sigma_{t}\mathcal{V}_{t}^{\top})$ then \uparrow //Restart the algorithm if the objective 13. | c = 1;**↓** function increases
- else 14.

 $\text{if } |\mathscr{F}_{\lambda}(\mathcal{U}_{t+1}\boldsymbol{\Sigma}_{t+1}\boldsymbol{\mathcal{V}}_{t+1}^{\top}) - \mathscr{F}_{\lambda}(\mathcal{U}_{t}\boldsymbol{\Sigma}_{t}\boldsymbol{\mathcal{V}}_{t}^{\top})| \leq \varepsilon \text{ then }$ 15. | break;

16. return \mathcal{W}_{T+1} .

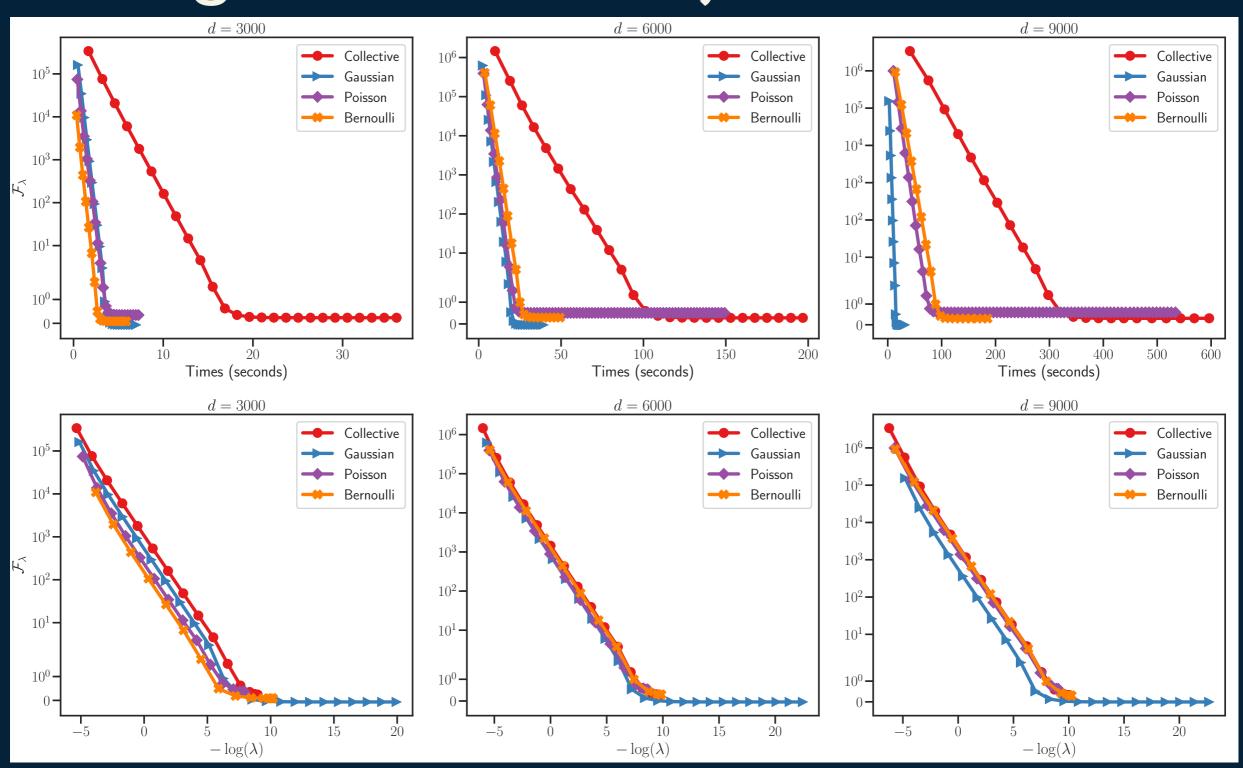
Experimental results on synthetic data

Each source matrix M^v is constructed as $M^v = L^v R^{v^\top}$ where $L^v \in \mathbb{R}^{d \times r_v}$ and $R^v \in \mathbb{R}^{d_v \times r_v}$

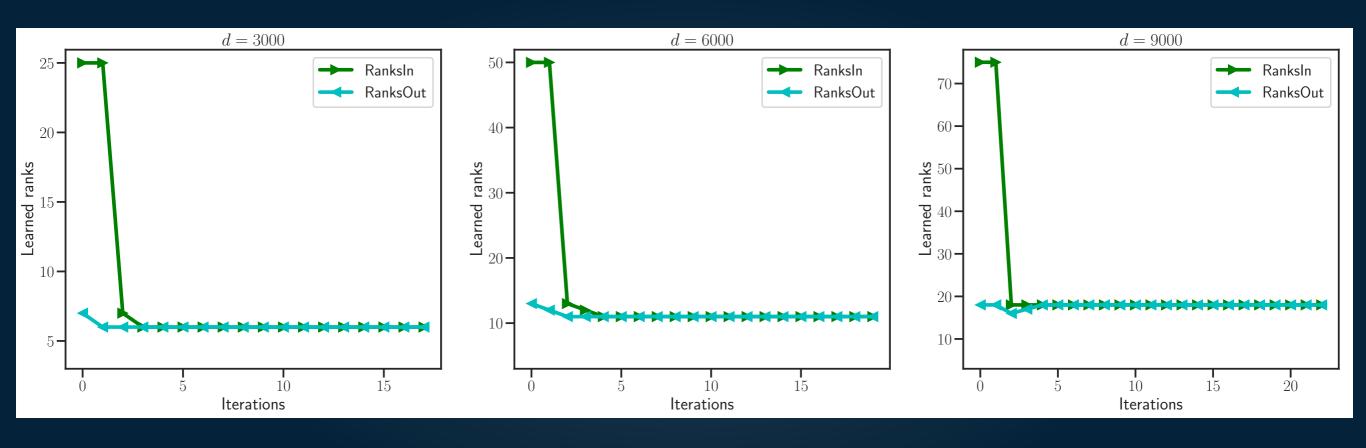
A fraction of the entries of M^v is removed uniformly at random with probability $p \in [0, 1]$.

	i	$i.d. \mathcal{N}(0.5, 1)$	$i.i.d. \mathcal{P}(0.5)$	$i.i.d.\mathcal{B}(0.5)$	
		$m{M}^1 \ (Gaussian)$	$m{M}^2\ (Poisson)$	$m{M}^3 \ (Bernoulli)$	${\cal M} \ (Collective)$
exp.1	dimension	3000×1000	3000×1000	3000×1000	3000×3000
	rank	5	5	5	unknown
exp.2	dimension	6000×2000	6000×2000	6000×2000	6000×6000
	rank	10	10	10	unknown
exp.3	dimension	9000×3000	9000 × 3000	9000 × 3000	9000 × 9000
	rank	15	15	15	unknown

Experimental results on synthetic data: convergence of the objective functions



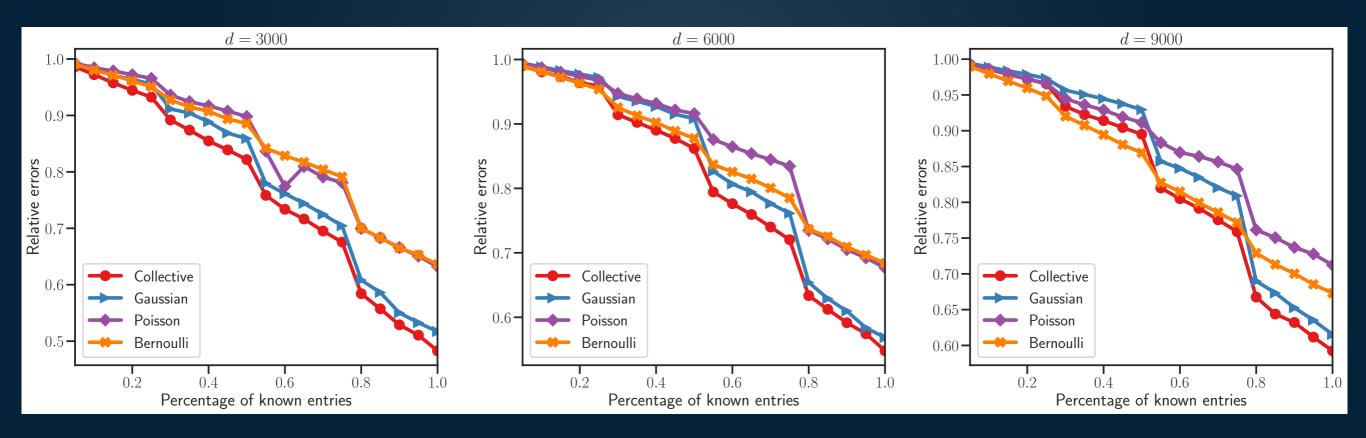
Experimental results on synthetic data: Learning ranks curve



Experimental results on synthetic data: evaluation of the estimator

• Our metric matrix completion is defined by the relative error, [Cai. et al. ('10); Davenport et al. ('14); Cai and Zhou ('13)],

$$\operatorname{RE}(\widehat{\boldsymbol{W}}, \boldsymbol{W}) = \frac{\|\widehat{\boldsymbol{W}} - \boldsymbol{W}^o\|_F}{\|\boldsymbol{W}^o\|_F}$$

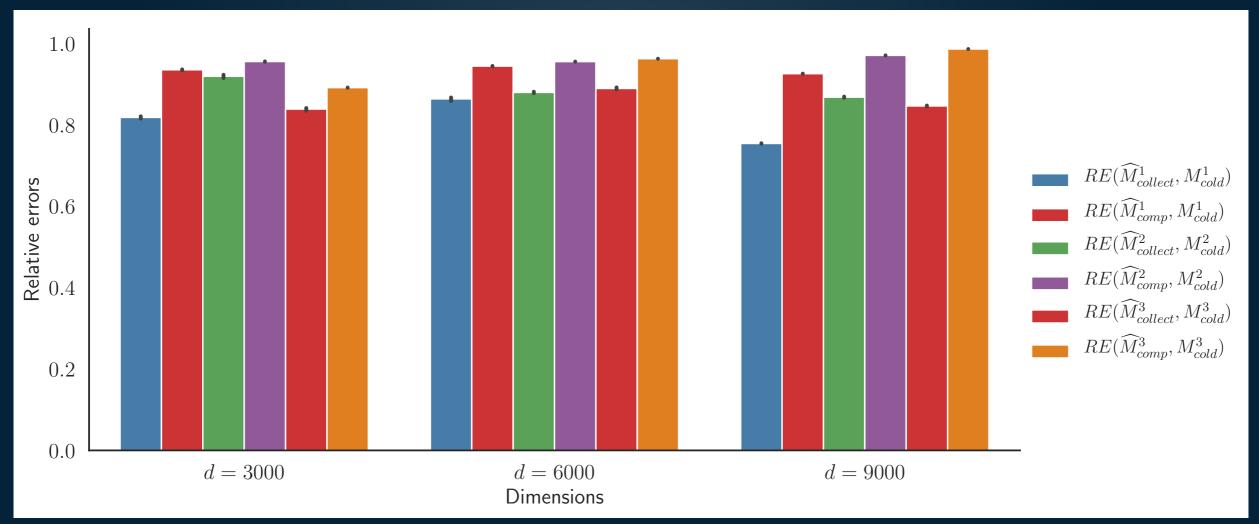


Performance on the synthetic data in terms of relative errors between the target and the estimator matrices

Experimental results on synthetic data: Cold-Start problem

• We construct the ``cold'' collective matrices: we extract vector of known entries of the chosen matrix and we set the first 1/5 fraction of its entries to be equal to zero.

$$\mathcal{M}_{\mathrm{cold}}^1 = (M_{\mathrm{cold}}^1, M^2, M^3), \, \mathcal{M}_{\mathrm{cold}}^2 = (M^1, M_{\mathrm{cold}}^2, M^3), \, \mathrm{and}$$
 $\mathcal{M}_{\mathrm{cold}}^3 = (M^1, M^2, M_{\mathrm{cold}}^3).$



Take home message

- Recovering a low-rank matrix when the data are collected from multiple and heterogeneous source matrices.
- Estimators are based on minimizing the sum of a goodness-of-fit term and the nuclear norm penalization of the whole collective matrix.
- Upper bounds on the prediction risk of the estimators.
- Empirical evidence of the efficiency of the collective matrix completion approach in the case of joint low-rank structure compared to estimate each source matrices separately.

References

- Alaya, Mokhtar Z., and Olga Klopp. 2019. "Collective Matrix Completion." *Journal of Machine Learning Research* 20:1–43.
- T. Cai and W. X. Zhou. A max-norm constrained minimization approach to 1-bit matrix completion. J. Mach. Learn. Res., 14(1):3619–3647, 2013.
- E. J. Candes and T. Tao. The power of convex relaxation: Near-optimal matrix completion. *IEEE Transactions on Information Theory*, 56(5):2053–2080, 2010.
- M. Fazel. Matrix Rank Minimization with Applications. PhD thesis, Stanford University, 2002.
- O. Klopp. Noisy low-rank matrix completion with general sampling distribution. *Bernoulli*, 20(1):282–303, 2014.
- O. Klopp. Matrix completion by singular value thresholding: Sharp bounds. *Electron. J. Statist.*, 9(2):2348–2369, 2015.
- Q. Yao and J. T. Kwok. Accelerated inexact soft-impute for fast large-scale matrix completion. In *Proceedings of the 24th International Conference on Artificial Intelligence*, IJCAI'15, pages 4002–4008. AAAI Press, 2015.

Thank you!

Distribution-free-setting: remarks

• In 1-bit matrix completion with logistic (resp. hinge) loss, the Bernstein assumption is satisfied with $\zeta = 1/(4e^{2\gamma})$ (resp. $\zeta = 2\tau$, such that $|\mathring{M}_{ij}^v - 1/2| \ge \tau, \forall v \in [V], (i,j) \in [d_u] \times [d_v]$) [Alquier et al. (2017)].

• The excess risk with respect to these two losses under the uniform sampling is obtained without a logarithmic factor [Alquier et al. (2017)],

$$R(\widehat{\mathcal{M}}) - R(\widehat{\mathcal{M}}) \lesssim \frac{\operatorname{rank}(\widehat{\mathcal{M}})}{p(d_u \wedge D)}.$$