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Matrix completion is ...

® Task: given a partially observed data matrix X . predict the
unobserved entries.

® Application to recommender systems, system identification, image
processing, microarray data, etc.



Recommender systems, Netflix prize
® A popular example is the Netflix challenge (2006-2009).

® Dataset: 430K users, | 8K movies, |00M ratings.
® Only I,1% of the matrix is filled!
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Some issues ...

® |[n general, we cannot infer missing ratings without any other
information.

® [his problem Is under-determined, more unknown than observations
(100M << 8.64M for Netflix).

® | ow-rank assumption: fill matrix such that its rank is minimum.
== A few factors explain most of the data.
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Low rank minimization

® Denote by §) the set of entries of the matrix X that have been
observed: we know the values X ij for all () € ©

inimj k bt Wi = X, ] Q2
minimize rank (1) s i7 i V(i g) €

observed entries sampling set

® Or a slightly weaker version

minimize rank () s. t. Z (X5 — W i5)* <6

® Or the regularization version

minimize Z (X@'j — Z‘j)z -+ )\rank( )
(4,5) €82
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Low rank minimization

® Non-convex problem and combinatorially NP-hard!

min dim (X))
rank(X) = [o(X)o= > L (:(x)>0)
i—1 ————

ith largest singular value

® Replace the lo pseudo-norm by the C1-norm

Nuclear / trace / 1-Schatten norm:
min dim (X))

[ X[ =lo(X)]i= >, aX).

1=1



Nuclear norm minimization

® Hence temping to consider the nuclear norm minimization problem:

minimize|| WV ||« s. t. Z (X5 — W i)* <6.
(4,5) €2

® Or equivalently the regularization / Lagrangian formulation:

o] 2
minimize; Z (X5 — W5)° + AW
(4,5) €2

® [his Is convex problem.



Motivations of collective MC

® Data Is often obtained from a collection of source matrices:

X = Xl,...,XV

o alg recommender systems, vvhen a new user has
no rating It Is Impossible to predict his ratings.

® Shared structure among the sources can be useful to get better

predictions.
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Collective MC: setup

.
® Each source view X~ € Rdu X dy and D = Z e
w=

v
* Model; let ~~ %J be independent Bernoulli random variables and

v v
independent from = %J with parameter = %J. Setting:

. v DU v
) [CR— U @ XU that Is } ij in@‘j-



Collective MC: sampling scheme

® We consider where we only assume that
each entry I1s observed with a positive probabllity.

0<p<I
min min v.o> .
velV] (i)eldulxld] P~




Collective MC: sampling scheme

(V)
°let i (resp. " +J) the probability of sampling a coefficient from 2-th
row (resp. J-th column) of X °. Namely:

7€ [dy] 1€ [dy] ve|V]
1
max max iesTei) < L.
ve|V] (i,j)E[du]x[dv]( J)




Case |: Exponential family noise

® We assume that the distribution of for each source X * depends on
the matrix of parameters /M ¥ and satisfied a natural exponential
family

X%}j‘M% ~ fh’v,G’v (X;J]|M;J]) — hv(ij) eXp (ijng - GU(M%))-

G°()

2
L’V’ U/Y
sup  (G")'(n) < U; inf  (G")'(n) > L2
n€l—v— %7+ %] €[ g 7+ x|

K > 0.




Exponential family noise: estimation
procedure of M = (M",....M")

i
e Given the observations &/ = ( } 1> ey ) ) the normalized

negative log-likelihood write as, for any V' = ( Lo, W) eRMD

1 (V) (V) U (V) (V)
LyW)=—=5> ) (Y3 =G E))
YT velV] (5,5) Eldu] X [do]

® [he nuclear norm penalized estimator of M is defined as:
= (MY, YY) = argmin £4,0V) + AWV,
ECo (V)

where Goo(y) = {WW € R™*P 1 V|00 < 71



Exponential family noise: theoretical
guarantee

® Upper bound on the rescaled Frobenius estimation risk:

Assume that Assumptions |, 2 and 3 hold and

_ (Uy V K) (\/ﬁ + (log(d, V D))3/2)
o O( dyD )

Then, with probability exceeding 1 — 4/(d,, + D) one has,

1 , _ rank(M)/ 5, (U, V K)? 3
_ < |
TplIM - MIE S (v S )(,qulog (dy v D))
rank (M )u

N

p2d, D
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Exponential family noise: remarks

® For a close uniform sampling distribution, that is ¢1p < Z] < cop
1 rank (M)
- M7 < -
dy D p(dy N D)

® Rate of convergence achieved by our estimator is faster compared to
the penalization by the sum-nuclear-norm since

rank(M) < Z rank(M").
v=1
® For small estimation error; one can choose p > rank(M)/(d, A D).

Thisimplies 1 2 rank(M)(d, V D).

where n = Z Z i; the expected number of observations
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Case 2: Distribution-free-setting

® \We do not assume any specific model for the observations.

® \We consider the risk of estimating X ° with a loss function ()

(y, gv(yﬁ ) s Pu-

Mv(y7;p) i gv(y7$/)| < IOU"CE I x/“




Distribution-free-setting: estimation
Procedure

® For any matrix & = ( : ) we define the empirical risk as

RJ D Z Z vév( zgv :LUJ)

V](i,5)€ dy]

® \\e define the oracle as:
* * *

M= (M"...,M") = argmin R(O)
ECo (V)
where  R( ):E[R]( |.
%

® We consider excess risk  R(/\1) — R(M).



Distribution-free-setting: estimation
procedure

® For a tuning parameter A > 0 the nuclear norm penalized estimator
reads as

NN

€ argmin {RJ )+ A9}

oo (7)
¢ >0 € Goo(7)
R RIM) > —2 M|
(&) — R(M )_pduDH — M|

® Assumption 4 Is called “Bernstein” condition
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Distribution-free-setting: theoretical
gurantee

Assume that Assumptions |, 2,4 and 5 hold and set p = max p,,.
Let velV]

A O(p(\/ﬁ+ V1og(d, V D)) >

d, D

Then, with probability exceeding 1 — 4/(d,, + D) one has,
*
rank(M) (p? + p*2\/7/S) (1 +1og(dy V D))

R(M) — R(M) § s
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3. Numerical Experiments



Optimization of -t 0Y) = awgmin 2y, 00) 4210

EG oo (V)

® Proximal gradient (PG):

® The PG generates a sequence of estimates

|

t — Lvo%y( t)

® Assume a singular value decomposition W = UXV ' then one has

proxy (W) =SV, (W) = Udiag((o1 — A/L)+,..., (0 — AL VT
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Power method to reduce complexity

® To compute we need to perform an SVD of = O((du A D)d,D)

® \We do not require to do a full SVD only a fewer Kt singular values of
which are large than AL

® As converges to a low rank solution then K¢ will be small during
terations.

o showed the following result:

SVTy/r(~ ) =QSVT,,(Q" =) O(kd.D)

Algorithm 2: Power Method: PowerMethod(Z,R,¢)

1. input: Z € R%*P initial R € RP** for warm-start, tolerance J;
2. initialize W = ZR;

3. fort=1,2,..., do

4. Q:+1 = QR(Wy);// QR denotes the QR factorization

5

6

Wi = Z(Z2' Qup1);

if |Q:419Q71 — ©:Q/ || < 6 then
| break;

.. return Qp... [Halko et al ("1 )]
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Approximate SVT based on power
method

Algorithm 3: Approximate SVT: Approx-SVT(Z,R, A, J)

. input: Z € R&XP R ¢ RP*F thresholds A and 6;
. Q= PowerMethod(Z, R, 5), /I Approximate the top k’t left singular values
.U, =, V] =SVD(Q'Z

. U =A{ui|lo; > A}
.Y = {’Ui‘(fz' > )\},
. X =max(X — A\Z,0); /7 (Z denotes the identity matrix)

. return OU, 3. V. [Yao and Kwok ('15)]

// Much smaller and less (exact) SVT performed onQ ' Z
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Algorithm 4: PLAIS-Impute for Collective Matrix Completion -

1. input: observed collective matrix Y, parameter A, decay parameter v € (0, 1),
tolerance ¢;

. [Up, Mo, Vo] = rank-1 SVD(Y);
initialize ¢ = 1, 6y = ||Y||r, Wo = W1 = AUV ;
.fort=1,...,T do

d¢ = v*00; I// Regularization is dynamically reduced by continuation strategy

At =V Ao — A) + A;

0p = (c—1)/(c+2); |

Q; = (14 )Wy — OW,_1; //Acceleration (FISTA)

Z,=VZy(L));

Vi1 = Vi1 = ViV, Ve

R = QR([vt,vt—l])§
Uir1, 2441, Viy1) = Approx-SVT(Z, Ry, At, 0t);  //Approximate SVT

if Z\(U1Z111V141) > Za(UsZ(V, ) then 4 /Restart the algorithm if the objective
L c=1 Ifunction increases

2

3.
4

5.
6.
7.
8.
9.

b
@

>I //\MVarm-start

O
“w N

o
-

if |,9?A(th+12t+1V;r+1) - <¢,\(ut2tv;r)| S £ then
| break;

—

. return W, ;.




Experimental results on synthetic data

Each source matrix MV is constructed as M? = LY R"' where LV € R¥*"
and RY € R v X7

A fraction of the entries of M" is removed uniformly at random with proba-
bility p € [0, 1].

1.i.d.N(0.5,1)  4.i.d. P(0.5) i.i.d. B(0.5)
M! M? M? M
(Gaussian)  (Poisson)  (Bernoulli) (Collective)

dimension 3000 x 1000 3000 x 1000 3000 x 1000 3000 x 3000

rank 5) D D unknown

dimension 6000 x 2000 6000 x 2000 6000 x 2000 6000 x 6000
rank 10 10 10 unknown

dimenston 9000 x 3000 9000 x 3000 9000 x 3000 9000 x 9000
rank 15 15 15 unknown




Experimental results on synthetic data:
convergence of the objectlve functlons
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Experimental results on synthetic data:
Learning ranks curve

d = 3000 d = 6000

=P==RankslIn === RankslIn 7 === RankslIn
==& RanksOut ==& RanksOut ) ==& RanksOut

10 ! § ! 10 ! : : 10
[terations [terations [terations
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Experimental results on synthetic data:
evaluation of the estimator

® Our metric matrix completion Is defined by the relative error,

d = 6000

Relative errors
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Performance on the synthetic data in terms of relative errors between the
target and the estimator matrices



Experimental results on synthetic data:
Cold-Start problem

We construct the cold" collective matrices: we extract vector of
known entries of the chosen matrix and we set the first |/5 fraction of

'ts entries to be equal to zero.
MCOld a (Mcold7 M2 MS) Mcold oy (Ml Mcold7 Mg)a and
Mcold I (Ml M2 M old)
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Take home message

® Recovering a low-rank matrix when the data are collected from
multiple and heterogeneous source matrices.

® Estimators are based on minimizing the sum of a goodness-of-fit
term and the nuclear norm penalization of the whole collective matrix.

® Upper bounds on the prediction risk of the estimators.

® Empirical evidence of the efficiency of the collective matrix
completion approach In the case of joint low-rank structure compared
to estimate each source matrices separately.
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Thank you!



Distribution-free-setting: remarks

® |n 1-bit matrix completion with logistic (resp. hinge) loss, the Bernstein
assumption is satisfied with¢ = 1/(4e*?) (resp. ¢ = 27, such that

MY —1/2) > 7Y € [V], (i) € [du] X [du])

® [he excess risk with respect to these two losses under the uniform
sampling Is obtained without a logarithmic factor

*

* rank (M)
R(M) = R(M) S (o N D)
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