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|. Background on OT



OT s ...

® A method for comparing probability distributions with the ability to
incorporate spatial information.

P







OT s ...
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Discrete OT Framework

Cost Matrix

Distance
(e.g. Euclidean distance)




Discrete OT: Monge’s Formula
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Discrete OT Framework:
Kantorovich’s Formula

Relaxed: Fractional Assignments

| eonid Kantorovich

1912-1986
Probabilistic couplings set (Transport Polytope)
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Discrete OT: Monge-Kantorovich /
Wasserstein Distance

® Computing OT between Pand ¢ amounts to solving a linear problem:

Monge-Kantorovich / Wasserstein Distance n

Wo (P, d) = Emin ){<(> >:ZZ Ci;ili;}
i=1 j=1

(P,

® Classical (balanced) OT distances require that all the mass has to be
transported and the two distributions have the same total probability

Ipll1 = [lalh
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2. Partial Wasserstein OT



Partial OT:
Partial VWasserstein Distance

® Partial OT problem focuses on transporting only a fraction

0 < s < min(||p||1, [[all1)
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® [he set of admissible coupling becomes
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Partial OT:
Partial VWasserstein Distance

® [he partial-Wasserstein distance reads as:

PWp(p,q) = min {({C ZZ CijTit

(p,1) im1 i—1

® Solution: we propose to directly solve the exact partial Wasserstein by
| | ledum dum
adding dummy or virtual points **n+1 and Ym+1.
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Partial OT:
Partial VWasserstein Distance

® \\e extend the cost matrix as follows:

Z _ ( g]-m forsome A >0 and £ > 0,
&1, 28+ A4
and the mass probabllity vectors as:
p=[pllalli — 4] = |5 1Pl — &
® Hence,
sz(swz + (llall = )0, i



Exact Partial VWasserstein Distance

® Letus define /' the solution of the extended problem with (C,p,q)
Namely:

cWH(p,q) := min (C,7).
e (P,q)
o+ A > max( Cy;)

Assume th and ‘S IS bounded, one has:

Wy (P, a) — PWy(p,a) = &(llplli + [lalli — 2 s).

The partial optimum transport plan of the partial VWasserstein problem
s the optimum transport plan /' deprived from its last row and column.




3. OT for PU Learning



Overview of PU Learning

® PU learning is a variant of classical binary classification problem.

® T[raining data consists of only positive points Pos and testing data Is

composed of unlabeled positives and negatives Unl
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® [he true proportion of positives within Unl, called class prior; Is
assumed to be known and given by:

m=P(y =+1lo =0)

~_w unobserved positive sample




Assumptions to enable PU learning:
Label mechanism assumptions

® [he class prior plays an important role in PU learning and many PU
learning methods require it as an Input.

Selected completely at random (SCAR) assumption [ISECRIEISRNIIIRC]

® SCAR:Pos samples are selected uniformly at random, independent
from their features, from the positive distribution, I.e.

{7} id.d~Plxly=1]

Selected at random (SAR) assumption

® SAR: Pos samples are a biased sample from the positive distribution,

where the bias completely depends on the features and it is defined by
the propensity score

e(x) =Plo=1|xz,y = 1]
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Label mechanism assumptions

SCAR assumption

SAR assumption

Credit images:




PU Learning as a Partial OT

® PU leaning can be broadcasted as a partial-like OT problem:
- Unl: source distribution; Pos: target distribution.

- Mass to be transported: & = 17'('
-
-n=ny, M =np,P; = —,Uj = —
ny np

® \/Ve |ook for an optimal transport plan that belongs to the following set
of couplings:
Ppoa) = {1 e R 0L, = {p,0}, 1 1, < {9,0},1,,71,, =}

® [0 avoid matching part of the mass of unlabeled negative with positive,

np
Loy = {P,0} means that Z ij = Pi, Vi exactly or 0.
j=1

® Ve aim at solving: nyg np

PUW?(p, ) = min {<(, >:ZZ Cij ij}

PU
6 (p’ ) 20 Zzl ]:1




PU Learning as a Partial OT

® To enforce the condition Lnp = {p7 0} we adopt a regularised
point of view of the partial OT problem: we then
solve the following:

ny+lnp+1
€ arg min ET1(P,q) Z Z Ci; z‘j+779( ),
=1 9=l
where
1 -« s+« <
P: = , g5 = ,n >0 (regularisation parameter).

ny np

o o€ [0,1— s]isthe percentage of Pos that we assume to be noisy (that
s to say we do not want to map them to point of Unl).
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PU Learning as a Partial OT

® \\e choose n=ng

Q( ): Z (H i(:m)H2+( i(m—l—l))2)

1=1
® [his group Lasso regularisation leads to a sparse transportation map and

enforces each of Unl samples to be mapped to only Pos sample or to
dum

the dummy point Lnp+1

Assume that A > 0,§ s a constant, there exits a large 71 =~ 0 such that
where ny+1np-+1

WEea) =2 2, ¢

zlgle s a solution of the regularlsed problem.
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4. Numerical experiments
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Partial Wasserstein in a PU Learning
under SCAR Assumption (UCI data)

® One class that Is positive, the other ones are negatives, drawn randomly.

® Average accuracy rates on various UC| datasets. P-W 0 indicates no noise
and P-W 0.025 stands for a noise level.

DATASET PU PUSB P-WO0O P-WO0.025

MUSHROOMS
SHUTTLE
PAGEBLOCKS
USPS
CONNECT-4
SPAMBASE

91.1
90.8
92.1
95.4
65.6
84.3
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90.8
90.3
90.9
95.1
58.3
84.1

96.3
95.8
92.2
98.3
55.6
78.0

96.4
94.0
91.6
98.1
61.7
76.4




Partial Wasserstein in a PU Learning
under SAR Assumption

® Following [Arjovsky et al.,, "I 9] we construct a colored version of MNIST:
each digit Is colored, either in green or ~, with a probability of 90% to be

colored In red.
® The Unl dataset is then mostly composed of digits, while Pos dataset

contains mostly green instances.

DATASET T PU PUSB P-WO0O P-WO0.025

ORIGINAL MNIST 0.1 97.9 97.8 98.8 08.6
COLORED MNIST 0.1 87.0 80.0 91.5 91.5
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Take home message

Consider partial Wasserstein distance to solve PU learning problem.

Partial VWasserstein distance compete and sometimes outperforms the
SOTA of PU learning methods.

We also studied the case of partial Gromov-VWasserstein distance. Our
approach for this setting Is based on Franck-VVolf algorithm.

An extension of this work can be tackle the case of partial sliced-OT

that leads to lower the computational complexities of calculating an OT
plans.
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