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|.VVhat is optimal transport
(OT)?



OTis ...

A method for comparing probability distributions with the abllity to
incorporate spatial information.
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Origin: Monge Problem (1781)
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I orsQu’oN doit tranfporter des terres d'un lieu dans un
autre, on a coutume de donner le nom de Déblai au

volume des terres que P'on doit tranfporter, & le nom de

- Remblai 3 Vefpace iu’elles doivent occuper apres le tranfport.




Monge Problem (1781)

Remblai

Déblai

® How to move dirt from one place (déblai) to another (remblai) while
minimizing the effort!

® Find a mapping = between the two distributions of mass ( ).

® Optimize with respect to a displacement cost ( ).
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Monge Problem (1781)

® The mapping -/ must the “déblai” measure towards the “remblai”.




Monge Problem (1781)

® Monge formulation aim at finding a mapping © such that:

inf [ Ol (@)p()

® Mapping ' does not exist in the general case.

® Brenier, 1991 proved existence and unicity of the Monge map for Euclidean
cost and distributions with densities.



Discrete OT Framework
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Kantorovich’s Formula (1942)

Relaxed: Fractional Assignments
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® ocus on where the mass goes, allow splitting.
® Applications mainly for resource allocation problems.

min C(z,y) (z,y)dzedy
= (“’7 ) R x [R™

Probabilistic couplings set (Transport Polytope)
(k,) =4 ZO,]R? (az,y)dyzu,/ (x, y)dz = 1}

™m

_ , Mass conservation constraints
Discrete Version
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A first simple examples



Matching words embeddings

Document | » b eaks Document 2
Obama Obama 7 The
speaks X I President

- reets
tthoe President Press  oreets 8 A
media Chicago ‘/ press
N f , IN
lllinois lllinois etia ] Chicago

Word Mover’s Distance avec VWord2vec embeddings
[Kusner et al, 2015 (ICML)]

® \\ords are embedded In a high-dimensional space with deep neural
networks.

® Matching two documents in an OT problem, with the Euclidean distance In
the embedded space.



Color transfer




VWWasserstein distance



Wasserstein distance

Source distribution Divergences

Target distributions

Monge-Kantorovich / VWasserstein Distance

Wy = _min [ Clay) (@ y)dedy = By [ Clay)
’n,x m

S (p,2)

® Do not need the distributions to have overlapping support.
® \/\Vorks for continuous and discrete distributions (histograms, empirical).
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2. How can it be used in data
science!



History of OT for machine learning

Occurences of OT+ML in Google Scholar

WGAN : Arjovski et al.
Sinkhorn : Cuturi

EMD : Rubner et al.

1990 1995 2000 2005 2010 2015

[R. Flamary, 2019 (HDR)]

® Recently introduced to ML (well know in image processing since 2000).
® Computational OT allows numerous applications (regularization).
® Deep learning boost (numerical optimisation and GAN).
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Wasserstein distance as a multi-label loss

s Flickr user tags: street, parade, dragon Flickr user tags: water, boat, reflection, sunshine
Predictions: people, protest, parade Predictions: water, river; lake, summer

Leveraging output space structure [Frogner et al,, 2015, (NeurlPS)]

Eskim6 dog

Classes of a multiclass (multi-label) problem have structure.

Takes into account semantic of classes in the output distribution probability.
Error in “similar' class is less penalized than to dissimilar one .

Can be represented as a Wasserstein distance between true label and output
a model.

Ground metric represent the distance between classes

1
win S W (7. ).
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Domain Adaptation Problem
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Probability Distribution Functions over the domains

® Ve Classification problem with data coming from different source (domains)
® Distributions are different but related.

[Credit image: N. Courty] E



Domain Adaptation Problem
target domain

DLSR

ga % all

>

\ decision function

Target Domain

Problems

® | abels only avallable in the source domain, and classification is conducted In tl
target domain.
® (lassifier on the source domain data performs badly in the target domain.

[Credit image: N. Courty] 19



OT for Domain Adaptation

Optimal transport Classification on transported samples

O O C(Class 2 : \ -
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— Classifier onx; —— C(Classifier on T(x])

here exist a transport © In the feature space between the two domains.

® [he transport preserves the conditional distributions:

Pi[y|zs] = Ply[ 7 ()]
3-step strategy [Courty et al., 201 /]

| Estimate optimal transport between distributions.

2. Transport the training samples onto the target distribution using barycentric
mapping [Ferradans et al,, 201 3].

3. Learn a classifier on the transported training samples.
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Wasserstein loss for generative modelling
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Generative modelling as a matching distribution problem

® | ecarn a model that maps random vector to target space.
® Distribution of the model Is targeted to be similar to the learning samples.

® Similarity as Wasserstein sense [Arjovsky et al. 201/, Deshpande et al. 2018,
Nguyen et al. 2020).

H}in Wg({f (zi)}fil’ 1% }JK=1)

{Zi} some random vectors, {mj} some samples from the target distribution.
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3. Conclusion



Take Home Message

® A powerful tool, well theoretically grounded, for manipulating distributions In
machine learning.

® Despite its initial computational complexity, a lot of applications, even in large
scale/deep learning settings.

® Others OT aspects (out the scope of the presentation): unbalanced OT,
Gromov-Wasserstein distance (working with structured data), and many more
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POT: Python Optimal Transport

Contents

e POT: Python Optimal Transport
e Quick start guide
e APl and modules
e Examples gallery

e Releases

0.7.0 | Anaconda Cloud 0.7.0 | ©) build |passing]  codecov [92% il downloads 177k

license MIT

This open source Python library provide several solvers for optimization problems related to

Optimal Transport for signal, image processing and machine learning.

Website and documentation: https:/PythonOT.github.io/

Source Code (MIT): https:/github.com/PythonOT/POT
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Optimal Transport
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Swiss Army Knife for Data Science!

Thank
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